北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Krichever tau-function: basic properties and modern applications
Krichever tau-function: basic properties and modern applications
In this course I plan review what is known about quasiclassical tau-function, introduced by Igor Krichever in 1992 in the context of topological string theories. The first aim is to define it and formulate its main properties, based on some fundamental facts from the complex geometry of Riemann surfaces, mainly the Riemann bilinear identities. I am going to present some simple proofs, and discuss most important examples, which include the Seiberg-Witten prepotentials and matrix models. I am going to pay special attention to one of the most important points: the residue formula for the third derivatives of the Krichever tau-function and its relation with associativity or WDVV equations.
Finally I would like to discuss certain modern developments, related with this object, which include the relation with instanton partition functions, isomonodromic tau-dunctions and even some unexpected relations with other famous relations in mathematical physics.
Professor Lars Aake Andersson
讲师
Andrei Marshakov
日期
2024年07月08日 至 12日
位置
Weekday Time Venue Online ID Password
周一,周三,周五 14:20 - 16:55 A3-4-301 ZOOM 05 293 812 9202 BIMSA
修课要求
Complex analysis, Hamiltonian mechanics, basic knowledge of Riemann surfaces
课程大纲
1. Reminder: Riemann surfaces, Abelian differentials, Riemann bilinear identities.
2. Complex curves with Krichever data, definition of the quasiclassical tau-function.
3. Reminder: integrable systems of particles, Toda and Calogero.
4. Examples: Seiberg-Witten prepotentials and dispersionless KP theory.
5. Residue formulas for the third derivatives.
6. Residue formulas and WDVV equations, Landau-Ginzburg theories.
7. Dispersionless KP and 2d quantum gravity.
8. Modern development: instanton partition functions and isomonodromic deformations.
听众
Graduate
视频公开
公开
笔记公开
公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060