北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Knot Theory
Knot Theory
The course is devoted to the modern knot theory.
The course starts with basic notions of Reidemeister moves, and proceeds with simplest invariants like colouring invariant, linking numbers, Kauffman bracket form of the Jones polynomial, Conway polynomial, which makes it accessible to students with no prerequisites.
Then it proceeds with basic invariants of knots such as fundamental group and the knot quandle, discusses braid theory (with Alexander and Markov theorem).
The course encompasses such deep constructions as Kontsevich integral and Khovanov homology (including Rasmussen invariant) and ends with author's personal results in this area.
We shall provide many problems: from exercises to unsolved problems in low-dimensional topology.
Professor Lars Aake Andersson
讲师
Vassily Manturov
日期
2024年06月05日 至 08月30日
位置
Weekday Time Venue Online ID Password
周三,周五 13:30 - 15:05 A3-1a-205 ZOOM 06 537 192 5549 BIMSA
课程大纲
Lecture 1. Reidemeister moves, colouring invariants, linking number
Lecture 2. The Kauffman bracket and the Jones polynomial
Lecture 3. Fundamental group. The knot group
Lecture 4. The knot quandle. The complete knot invariant
Lecture 5. The braid group and the braid recognition algoritm
Lecture 6. Alexander's theorem and the Burau representation [June, 21]
Lecture 7. Markov's theorem [June, 26]
Lecture 8. The Alexander polynomial [June, 28]
July, 3: Exercise session
Lecture 9. Quadrisecants of knots [July, 5]
Lecture 10. Vassiliev's invariants. The chord diagram algebra [July, 10]
Lecture 11. The Kontsevich integral [July, 12]
Lecture 12. The Khovanov homology [August, 14 (online only)]
Lecture 13. The Rasmussen invariant. Sliceness obstructions [August, 16 (online only)]
Lecture 14. Introduction to virtual knot theory [August, 21]
Lecture 15. The Khovanov homology for virtual knots with arbitrary coefficients [August, 23]
Lecture 16. Free knots and the parity bracket [August, 28]
Lecture 17. A survey of unsolved problems [August, 30]
视频公开
公开
笔记公开
公开
讲师介绍
Vassily Olegovich Manturov, Professor of Moscow Institute of Physics and Technology Education: • 2008, Habilitation Thesis "Geometry and Combinatorics of Virtual Knots”, M.V. Lomonosov Moscow State University • 2002, Ph.D. "Bracket Structures in Knot Theory", M.V. Lomonosov Moscow State University 1995-2000, Student, Department of Mechanics and Mathematics, M.V. Lomonosov Moscow State University, Graduated with Excellence in Mathematics. Positions: • Professor of RAS (elected in 2016), • Managing Editor of the "Journal of Knot Theory and Its Ramifications”, since 2016, • Bauman Moscow State Technical University, Full Professor, since November 2010, • Editor-in-Chief's Deputy for "Proceedings of the Seminar on Vector analysis with its applications to geometry, mechanics, and physics", Moscow State University, in Russian (Proceedings are published since 1930s), • Member of the Editorial Board of “ISRN Geometry”, • Member of the Laboratory “Quantum Topology”, Chelyabinsk State University, Chelyabinsk, Russia, • Member of the Moscow Mathematical Society, Member of the American Mathematical Society, • Member of the dissertation council of the Kazan State University since 2019.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060