北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Introduction to special functions \(ICBS\)
Introduction to special functions
In the first part of the course held in September - October 2024, we observed classical theory of Gauss hypergeometric function, including related topics on Euler integrals, Riemann zeta function, Riemann differential equation and Barnes integrals.
The second part starts from the survey of degenerations of Gauss hypergeometric function, including Bessel and Whittaker functions and their applications in mathematical physics. We investigate further the emergence of special functions in representation theory of classical groups as specific matrix elements. The next subject is the theory of basic hypergeometric series – the q -difference analog of the theory of hypergeometric function.
The multivariable generalizations originate from the theory of spherical functions on symmetric spaces. Here we touch the geometry of symmetric spaces, constructions , classification and duality between compact and noncompact cases. We touch the Heckman-Opdam development of the theory of special functions and finish, once have time left, with Calogero-Sutherland hyperbolic systems and Ruijsenaar’s relativistic generalization.
讲师
铁广强
日期
2025年04月03日 至 -
课程大纲
Part II
1. Confluent hypergeometric functions. Bessel and Whitakker functions.
2. Special functions in representation theory and in mathematical physics
3. Basic hypergeometric theories
4. Symmetric spaces and spherical functions
5. Dunkl operators and Heckman-Opdam hypergeometric functions
6. Ruijsenaars hyperbolic function
参考资料
1. Whittaker, E. T., and G. N. Watson. A Course of Modern Analysis, I, II. University press, 1920.
2. Andrews, George E., et al. Special functions. Vol. 71. Cambridge: Cambridge university press, 1999.
3. Gasper, George, and Mizan Rahman. Basic hypergeometric series. Vol. 96. Cambridge university press, 2011.
4.Vilenkin N. I. A. Special functions and the theory of group representations. American Mathematical Soc., 1978. – Т. 22.
5. Helgason, Sigurdur. Differential geometry and symmetric spaces. Vol. 341. American Mathematical Society, 2024.
6. Helgason, Sigurdur. Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions. Vol. 83. American Mathematical Society, 2022.
7. Ruijsenaars, S. N. M. "A Generalized Hypergeometric Function Satisfying Four Analytic Difference Equations of Askey--Wilson Type." Communications in mathematical physics 206, no. 3 (1999): 639-690.
视频公开
公开
笔记公开
公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060