北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Introduction to Nonlinear Evolutionary PDEs
Introduction to Nonlinear Evolutionary PDEs
The focus of this course will be on evolution equations of both Hamiltonian (conservative, such as wave, Klein-Gordon, or Schroedinger) and dissipative kinds (heat equation)on $\mathbb{R}^{d},d\geq 2$, but the main focus will essentially be $d=3$. Our goal is to provide an introduction to the \textbf{concentration compactness} technique (or profile decomposition to capture the defect of compactness), which is a core method in modern large data theory. To develop intuition, we first cover the simpler elliptic analogue, which addresses the loss of compactness due to the action of symmetry groups. We begin with a self-contained discussion of wave and Klein-Gordon equations and carefully cover some basic aspects leading to problems of Fourier analysis, such as Sobolev embeddings and Strichartz estimates. A prior course in PDE is not required, but basic knowledge of ODEs and functional analysis is helpful.
讲师
Puskar Mondal
日期
2025年09月16日 至 12月23日
位置
Weekday Time Venue Online ID Password
周二,周五 13:30 - 15:05 Shuangqing-C654 ZOOM 14 712 322 9571 BIMSA
修课要求
Basic ODE and functional analysis
课程大纲
\section{Tentative Syllabus}
\noindent ODE and Dynamical systems, Lyapunov function, Hartman-Grobman theorem, Stable-Unstable manifolds. Nonlinear wave and Klein-Gordon equations: Cauchy problem, energy method, long-time behavior, basic Fourier analysis such as Littlewood-Paley theory, Strichartz estimates, Introduction to Concentration-Compactness technique for dispersive PDEs. If time permits, we will see how this concentration-compactness method can be applied to the equations of advection-diffusion type, e.g., the incompressible 3-d Navier-Stokes equation, and prove an interesting result: mild solutions which remain bounded in the space $\dot{H}^{\frac{1}{2}}$ (critical space) do not become singular in finite time.
参考资料
Notes are to be provided,
CONCENTRATION COMPACTNESS FOR CRITICAL WAVE MAPS, Joachim Kreiger, Wilhelm Schlag, European Mathematical Society,
Carlos E. Kenig, Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta
Math. 201 (2) (2008) 147–212.
听众
Advanced Undergraduate , Graduate , 博士后
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Puskar Mondal is currently a postdoctoral fellow at CMSA (dept. of Mathematics) and a lecturer at the Math department at Harvard University. His mentor is Prof. Shing-Tung Yau. Before this, he was a Ph.D. student at Yale university where he worked on Mathematical General Relativity under the supervision of Prof. Vincent Moncrief.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060