北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Introduction to Harmonic Analysis \(ICBS\)
Introduction to Harmonic Analysis

In this course, we begin by exploring foundational concepts such as the Hardy-Littlewood maximal function, the Lebesgue differentiation theorem, and the Marcinkiewicz interpolation theorem. We then delve into the Calderón-Zygmund decomposition, which effectively separates functions and sets into "good" and "bad" parts, allowing for distinct treatment through techniques in real variable theory and harmonic analysis.

Next, we examine the space of functions of bounded mean oscillation (BMO), which consists of functions whose mean oscillation over cubes is uniformly bounded. BMO is significant in the regularity theory of nonlinear partial differential equations. We rigorously analyze the proofs of key theorems, including the John-Nirenberg inequality, the Fefferman-Stein theorem, and the Stampacchia interpolation theorem.

Additionally, we study Muckenhoupt’s \(A_p\) weights and their associated weighted norm inequalities, which provide characterizations of BMO functions. A primary objective of the course is to demonstrate that the Hardy-Littlewood maximal operator is of weighted strong type \((p, p)\) for \(1 < p < \infty\) if and only if the weight satisfies Muckenhoupt’s \(A_p\) condition.

Finally, we examine the statement and proof of the celebrated Gehring Lemma, demonstrating how this lemma establishes that every $A_p$ weight satisfies a reverse Hölder inequality.
讲师
马赫迪·霍尔莫齐
日期
2024年09月20日 至 12月20日
位置
Weekday Time Venue Online ID Password
周五 20:55 - 19:20 A7-201 ZOOM 06 537 192 5549 BIMSA
参考资料
[1] E. M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, 1970.
[2]E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality,
and Oscillatory Integrals, Princeton University Press, 1993.
[3] E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton
University Press, 1970.
[4] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press,
1988.
[5] J. Duoandikoetxea, Fourier Analysis, American Mathematical Society,
2001.
[6] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities
and Related Topics, North-Holland, 1985.
[7] J. Kinnunen, Harmonic Analysis, 2017
[8] S. Lu, Y. Ding and D. Yan, Singular Integrals and Related Topics, World
Scientific, 2007.
[9] B. Simon, Harmonic Analysis, A Comprehenesive Course in Analysis,
Part 3, American Mathematical Society, 2015.
[10] A. Torchinsky, Real Variable Methods in Harmonic Analysis, Academic
Press, 1986.
[11] L. Grafakos, Classical Fourier Analysis, Springer, 2008.
[12] L. Grafakos, Modern Fourier Analysis, Springer, 2008.
听众
Advanced Undergraduate , Graduate , 博士后 , Researcher
视频公开
不公开
笔记公开
不公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060