北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Introduction to Bayesian Statistics
Introduction to Bayesian Statistics
This course provides an introduction to Bayesian statistics, covering foundational concepts, decision theory, prior and posterior distributions, hypothesis testing, and applications. The course follows \textit{Statistical Decision Theory and Bayesian Analysis} by James O. Berger (Chapters 1--7), supplemented with discussions on Bayesian solutions to statistical paradoxes and interpretations to common misconceptions (e.g., medical testing for rare diseases).
Professor Lars Aake Andersson
讲师
关永涛
日期
2025年09月16日 至 12月16日
位置
Weekday Time Venue Online ID Password
周二,周四 16:10 - 17:50 A14-203 Zoom 15 204 323 0165 BIMSA
修课要求
calculus, linear algebra, probability
课程大纲
Introduction to Bayesian Statistics
Instructor: Yongtao Guan
Email: ytguan@bimsa.cn
Term: Fall 2025
Class Meetings: Tuesdays & Thursdays, 16:05–17:40

Course Description
This course provides an introduction to Bayesian statistics, covering foundational concepts,
decision theory, prior and posterior distributions, hypothesis testing, and applications. The course
follows Statistical Decision Theory and Bayesian Analysis by James O. Berger (Chapters 1–7),
supplemented with discussions on Bayesian resolutions to statistical paradoxes and real-world in
terpretations (e.g., medical testing for rare diseases).

Prerequisites
Basic calculus, linear algebra, Probability

Textbook
Primary: Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis.
Supplementary: Leonard J. Savage (1954). The Foundations of Statistics (second revised edition).

Course Schedule (12 Weeks, 24 Lecs)
Week 1: Foundations of Bayesian Inference
1 Frequentist vs. Bayesian; Bayes’ theorem; Basic examples (coin flips, medical tests).
2 Subjective probability and degrees of belief; Likelihood principle (Berger Ch. 1); Conjugate priors (Beta-Binomial model).
Week 2: Decision Theory Basics
1 Framework of statistical decision theory (Ch. 2); Loss functions, risk, and admissibility.
2 Minimax and Bayes rules; Example: Point estimation under squared error loss.
Week 3: Prior Distributions & Elicitation
1 Noninformative priors (Berger Ch. 3); Jeffreys’ prior, reference priors.
2 Informative priors: Elicitation from experts; Hierarchical priors (brief introduction)
Week 4: Bayesian Inference & Posterior Analysis
1 Posterior distributions and conjugacy (Berger Ch. 4); Normal-Normal model.
2 Credible intervals vs. confidence intervals; Predictive distributions.
Week 5: Hypothesis Testing & Model Comparison–
1 Bayesian hypothesis testing (Berger Ch. 4 & 7); Bayes factors.
2 Interpretation of p-values vs. posterior probabilities; Lindley’s paradox.
Week 6: Bayesian Computation (Introduction)
1 Analytical vs. computational methods; Grid approximation, rejection sampling.
2 Introduction to MCMC (Metropolis-Hastings).
Week 7: Bayesian Interpretations of Paradoxes–
1 Monty Hall problem (Bayesian perspective); Simpson’s paradox.
2 Medical testing paradox (false positives in rare diseases); Base rate neglect.
Week 8: Bayesian Linear Models
1 Bayesian linear regression (Berger Ch. 4); Conjugate priors for regression.
2 Comparison with frequentist OLS; Predictive performance.
Week 9: Robustness & Sensitivity
1 Robust Bayesian analysis (Berger Ch. 4); Prior sensitivity checks.
2 Case study: How prior choice affects inference.
Week 10: Empirical Bayes & Shrinkage
1 Introduction to Empirical Bayes (Berger Ch. 4); James-Stein estimator.
2 Applications in A/B testing.
Week 11: Advanced Topics & Applications
1 Bayesian model averaging; Variable selection.
2 Bayesian networks (brief overview); Real-world applications (e.g., spam filtering).
Week 12: Review & Project Presentations
1 Course recap; Q&A on key topics.
2 Student presentations (mini-projects).
参考资料
Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (second edition).
Leonard J. Savage (1954). The Foundations of Statistics (second revised edition).
听众
Undergraduate , Advanced Undergraduate , Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
不公开
语言
中文 , 英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060