Lectures on hypersurface singularities I
The course is an introduction to hypersurface singularities. The potential topics are: the Milnor cone and fibration theorem, topology of Milnor fibers (homotopy type, Betti numbers), monodromy of Milnor fibers, Thom-Sebastiani type theorem, Topology of the singularity link, Brieskorn varieties and exotic spheres. Local Weierstrass theory and applications, Milnor and Tujrina numbers, right and contact equivalence, finite determinacy, etc.

讲师
日期
2024年09月10日 至 12月19日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周二,周四 | 09:50 - 11:25 | A3-4-101 | ZOOM 13 | 637 734 0280 | BIMSA |
修课要求
Algebraic geometry, algebraic topology.
参考资料
1. Singular points of complex hyper-surfaces, J.Milnor;
2. Introduction to singularities and deformations, G.M.Greuel, C.Lossen, E.Shustin;
3. Three-dimensional link theory and invariants of plane curve singularities, D.Eisenbud, W.Neumann.
2. Introduction to singularities and deformations, G.M.Greuel, C.Lossen, E.Shustin;
3. Three-dimensional link theory and invariants of plane curve singularities, D.Eisenbud, W.Neumann.
听众
Advanced Undergraduate
, Graduate
视频公开
不公开
笔记公开
不公开
语言
英文