北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Geometric approach to random matrices and asymptotic representation theory \(ICBS\)
Geometric approach to random matrices and asymptotic representation theory
A. Okounkov in the celebrated paper [1] has established the common limit of the mixed moments of random Young diagrams with respect to Plancherel measure and of random matrices from Gaussian Unitary Ensemble. He used the fact that moments of random matrices enumerate the maps of topological surfaces while representation theory of symmetric groups that produces Plancherel measure is connected to the description of essentially the same surfaces as the ramified coverings of the sphere.

In this course we will study this construction. Then we will discuss its possible extensions to other classical ensembles of random matrices, such as Laguerre and Jacobi Unitary Ensembles. Their counterparts in representation theory side of the correspondence are connected to Schur-Weyl duality and skew Howe duality.

This course extends the results covered in my minicourse "Random matrices and asymptotic representation theory" from January 2024, and has some overlaps with the lectures by Pavel Nikitin "Asymptotic representation theory and random matrices", but uses geometric approach. The lectures will be self-contained.

This course will be taught from June 20 to July 11, and from Aug. 20 to Sept. 3, 2025.
Professor Lars Aake Andersson
讲师
Anton Nazarov
日期
2025年06月20日 至 09月03日
位置
Weekday Time Venue Online ID Password
周三,周五 09:50 - 12:15 A3-3-201 Zoom 15 204 323 0165 BIMSA
修课要求
Representation theory of symmetric group, Lie groups and Lie algebras, random matrix theory. Acquaintance with the material from the my previous courses "Asymptotic representation theory and random matrices", "From free fermions to limit shapes and beyond", courses of Pavel Nikitin "Asymptotic representation theory and random matrices", "Symmetric functions and representation theory", "Asymptotic representation theory" and course of Fan Yang "Topics in Random matrix theory" would be a plus, but is not required.
课程大纲
1. Short reminder of classical ensembles in random matrix theory
2. GUE random matrices and maps of topological surfaces
3. Reminder on representation theory of symmetric groups, Plancherel measure
4. Ramified coverings of surfaces and Hurwitz numbers
5. Correlation functions in large n limit
6. Laguerre Unitary Ensemble, surfaces and Hurwitz numbers
7. Schur-Weyl duality, limit shapes of P.Biane and Marchenko-Pastur law
8. Jacobi Unitary Ensemble and Hurwitz numbers
9. Skew Howe duality and representations of symmetric groups
10. Limit shape of random square Young tableaux and distribution of JUE eigenvalues.
参考资料
[1] Okounkov, Andrei, Random matrices and random permutations, International Mathematics Research Notices 2000.20 (2000): 1043-1095.
[2] Okounkov, Andrei, and Rahul Pandharipande, Gromov-Witten theory, Hurwitz numbers, and matrix models, I, Proc. Symposia Pure Math. Vol. 80. 2009.
[3] Michel Ledoux, Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials. The Continuous Case, Electron. J. Probab. 9 177 - 208, 2004. https://doi.org/10.1214/EJP.v9-191
[4] Gisonni, Massimo, Tamara Grava, and Giulio Ruzza, Laguerre ensemble: correlators, Hurwitz numbers and Hodge integrals, Annales Henri Poincaré. Vol. 21. No. 10. Cham: Springer International Publishing, 2020.
[5] Gisonni, Massimo, Tamara Grava, and Giulio Ruzza, Jacobi ensemble, Hurwitz numbers and Wilson polynomials, Letters in Mathematical Physics 111.3 (2021): 67.
[6] Pittel, Boris, and Dan Romik, Limit shapes for random square Young tableaux, Advances in Applied Mathematics 38.2 (2007): 164-209.
[7] Panova, Greta, and Piotr Śniady, Skew Howe duality and random rectangular Young tableaux, Algebraic Combinatorics 1.1 (2018): 81-94.
听众
Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Anton Nazarov is an associate professor at Saint Petersburg State University, Russia. He completed his PhD at the department of high-energy and elementary particle physics of Saint Petersburg State University in 2012 under the supervision of Vladimir Lyakhovsky. In 2013-2014 he was a postdoc at the University of Chicago. Anton's research interests are representation theory of Lie algebras, conformal field theory, integrable systems, determinantal point processes.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060