北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Young Topologist Seminar on GLMY Theory
BIMSA Young Topologist Seminar on GLMY Theory
GLMY理论是丘先生和合作者对研究有向图提出的一系列同调和同伦等理论,这套理论拥有广泛的应用场景包括理解复杂网络的高阶互作的拓扑结构、分析分子和材料的结构与功能关系、解析复杂疾病的成因。GLMY理论既突破了传统的代数拓扑方法(单纯同调理论),同时在发展中又面临一些挑战性的课题如有向图的同伦论。为了鼓励更多的青年学者投入到GLMY理论的研究和应用中,特此组织了本次会议。欢迎大家加入并与我们有更多的交流!
组织者
毕婉莹 , 李京艳 , 阮洋洋 , 吴杰 , 张琪
演讲者
毕婉莹 ( Hebei Normal University & BIMSA , 北京雁栖湖应用数学研究院 )
邸少波 ( Hebei Normal University & BIMSA , 北京雁栖湖应用数学研究院 )
童浥尘 ( Kyoto University )
吴双 ( 北京雁栖湖应用数学研究院 )
张琪 ( Hebei Normal University & BIMSA , 北京雁栖湖应用数学研究院 )
日期
2024年01月30日 至 30日
位置
Weekday Time Venue Online ID Password
周二 14:00 - 17:00 A3-4-101 ZOOM A 388 528 9728 BIMSA
日程安排
时间\日期 01-30
周二
14:00-14:30 毕婉莹
14:35-15:05 邸少波
15:15-15:45 童浥尘
15:50-16:20 吴双
16:30-17:00 张琪

*本页面所有时间均为北京时间(GMT+8)。

议程
    2024-01-30

    14:00-14:30 毕婉莹

    The magnitude homology of a hypergraph

    The magnitude homology, introduced by R. Hepworth and S. Willerton, offers a topological invariant that enables the study of graph properties. Hypergraphs, being a generalization of graphs, serve as popular mathematical models for data with higher- order structures. In this talk, we focus on describing the topological characteristics of hypergraphs by considering their magnitude homology. We begin by examining the distances between hyperedges in a hypergraph and establish the magnitude homology of hypergraphs. Additionally, we explore the relationship between the magnitude and the magnitude homology of hypergraphs. Furthermore, we derive several functorial properties of the magnitude homology for hypergraphs. Lastly, we present the Künneth theorem for the simple magnitude homology of hypergraphs.

    14:35-15:05 邸少波

    On GLMY homology of Cayley digraphs and covering digraphs

    We develop a theory of covering digraphs, similar to the theory of covering spaces. By applying this theory to Cayley digraphs, we build a “bridge” between GLMY theory and group homology theory, which helps to reduce path homology calculations to group homology. We show some cases where this approach allows us to fully express path homology in terms of group homology. To illustrate this method, we provide a path homology computation for the Cayley digraph of the additive group of rational numbers.

    15:15-15:45 童浥尘

    Van Kampen theorem and Mayer-vietoris sequence in GLMY theorey

    Both the Van Kampen theorem and the Mayer-Vietoris sequence are powerful tools in algebraic topology. In GLMY theory, neither of them hold in general, and we would like to discuss the potential connection between their failures.

    15:50-16:20 吴双

    Applications of GLMY theory in metabolomic networks of complex diseases

    Human diseases involve metabolic alterations. Metabolomic profiles have served as a biomarker for the early identification of high-risk individuals and disease prevention. However, current approaches can only characterize individual key metabolites, without taking into account their interactions.This work have leveraged a statistical physics model to combine all metabolites into bDSW networks and implement GLMY homology theory to analyze and interpret the topological change of health state from symbiosis to dysbiosis.The application of this model to real data allows us to identify several hub metabolites and their interaction webs, which play a part in the formation of inflammatory bowel diseases.

    16:30-17:00 张琪

    Coalgebra structure on GLMY theory

    We construct a coalgebraic structure in path homology (GLMY). It is known that the existence of a coalgebra structure in homology is fundamental to the subject. In order to better understand and describe the properties of GLMY homology, we extend some properties of traditional homology to GLMY homology. Furthermore, we focus on the suspension structure of digraphs. By analogy with the properties of suspension in space, we proved that the suspension of a digraph has a path homology coalgebra structure analogous to that for a suspension of space under certain conditions. This finding provides a strong theoretical support for further study of GLMY homology.

北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060