北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > The formal moment map geometry of the space of symplectic connections \(ICBS\)
The formal moment map geometry of the space of symplectic connections
Symplectic connections are one of the main ingredients in the construction of Fedosov star products. The space of symplectic connections is an infinite dimensional symplectic manifold on which acts the group of Hamiltonian diffeomorphisms with moment map computed in [2]. Though different, this moment map is known to share similar properties with the scalar curvature of Kähler manifolds [5].
In the lectures, based on the preprint [6], I will give a formal analogue of the work of Foth-Uribe [4]. Namely, I will describe a bundle of Fedosov star product algebras on the space of symplectic connections. Such a bundle admits a canonical formal connection adapted to the star product on the fibers. I will study the curvature of the formal connection. I will show the star product trace of the curvature gives a formal symplectic form on the space of symplectic connections which is invariant by the action of the group of Hamiltonian diffeomorphisms. I will show the star product trace gives a formal moment map for this action. Finally, I will discuss applications of the above picture to the study of automorphisms of star product and Hamiltonian diffeomorphisms.
讲师
Laurent La Fuente-Gravy
日期
2021年09月06日 至 10日
修课要求
Basic knowledge of differential and symplectic geometry (vector bundles, connections, symplectic forms,...)
参考资料
[1] J.E. Andersen, P. Masulli, F. Schätz, Formal connections for families of star products, Comm. Math. Physics 342 (2), 739–768 (2016).
[2] M. Cahen, S. Gutt, Moment map for the space of symplectic connections, Liber Amoricorum Delanghe, F. Brackx and H. De Schepper eds., Gent Academia Press, 2005, 27–36.
[3] B.V. Fedosov, A simple geometrical construction of deformation quantization, Journal of Differential Geometry 40, 213-238 (1994).
[4] T. Foth, A. Uribe, The manifold of compatible almost complex structures and geometric quantization, Comm. Math. Phys. 274 (2), 357–379 (2007).
[5] A. Futaki, L. La Fuente-Gravy, Kähler geometry and deformation quantization with moment maps, ICCM proceedings 2018, 31–66 (2020).
[6] L. La Fuente-Gravy, The formal moment map geometry of the space of symplectic connections, arXiv:2106.13608.
视频公开
公开
笔记公开
公开
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060