北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Flag manifold sigma models
Flag manifold sigma models
The course introduces $2D$ sigma models with flag manifold target spaces. Models of this class arise in continuum limits of $SU(n)$ spin chains, but they are also of interest due to their resemblance to $4D$ gauge theories and because of their remarkable integrability properties. Examples such as the $CP^n$ model and Grassmannian models will be treated in some detail.
Upon reviewing the geometry of $SU(n)$ flag manifolds, I will explain how they serve as phase spaces for spin chain path integrals. Continuum limits of such spin chains are described by $2D$ sigma models with topological terms that affect the ground state properties. The second part of the course will be dedicated to the study of integrable sigma models and, in particular, to the duality with generalized Gross-Neveu models. I will introduce supersymmetry in this context and consider deformed models and their conformal limits.
Professor Lars Aake Andersson
讲师
Dmitri Bykov
日期
2024年05月14日 至 06月28日
位置
Weekday Time Venue Online ID Password
周二,周五 13:30 - 15:05 A3-3-201 ZOOM 03 242 742 6089 BIMSA
修课要求
Hamiltonian mechanics. Quantum mechanics. $2D$ quantum field theory; renormalization. Basics of conformal field theory. Complex analysis. Lie groups, Lie algebras. Supersymmetry. Basics of Kähler geometry and differential geometry of homogeneous spaces. Recap of basic concepts will be provided, depending on the audience.
课程大纲
1. Introduction to nonlinear sigma models. Minimal surfaces and sigma models in string theory. Geometric ingredients (metric, B-field, topological terms). $1D$ reductions: geodesics on manifolds.
2. Models with Kähler target spaces. The $CP^n$ model. Holomorphic maps as instanton solutions in $2D$.
3. Flag manifolds as (co)adjoint orbits. Coherent states. Elements of geometric quantization. Path integral for a single spin.
4. Invariant tensors on flag manifolds. Complex structures and Kähler metrics.
5. SU(n) representation theory via quantization of flag manifolds. Oscillator representations: Holstein-Primakoff, Schwinger-Wigner and Dyson-Maleev.
6. The large spin limit in quantum mechanics. The quantum particle on a flag manifold.
7. Spin chains. The Haldane limit. Topological terms and $Z_n$-anomalies. Large-n limit. The bilinear-biquadratic spin chain.
8. Zero curvature representations for models with symmetric target spaces. $Z_n$-graded homogeneous spaces.
9. Integrable models with complex homogeneous target spaces. The normal metric. Relation between two types of Lax connections.
10. Example of integrability: harmonic maps from $S^2$ to $CP^n$. Generalization to harmonic maps from $S^2$ to the complete flag manifold in $C^3$.
11. 'Derivation' of flag manifold sigma models from $4D$ Chern-Simons theory. The gauged linear sigma model.
12. Sigma models as Gross-Neveu models. Applications in quantum mechanics: construction of generalized spherical harmonics on $CP^n$.
13. Relation to nilpotent orbits. The Springer resolution. Quiver varieties. Orthogonal and symplectic Grassmannians.
14. Deformed (non-homogeneous) models. Calculation of beta function. Hermitian Ricci flow. Generalized Nahm equations.
15. Models with $N=(2,2)$ supersymmetry. Relation to Kähler geometry.
16. The 'sausage' model, its supersymmetric version and conformal limits.
17. The super-Thirring model. Duality with the super-cylinder sigma model. Calculation of correlation functions.
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Dmitri Bykov received his Ph.D. in theoretical physics from Trinity College Dublin in 2011. He held postdoc positions at Nordita (Stockholm, Sweden), Max-Planck-Institute for Gravitational Physics (Potsdam, Germany) and Max-Planck-Institute for Physics (Munich, Germany) and obtained his Habilitation (Dr. Phys.-Math. Sci.) in 2018. Since 2021 he is a leading scientific researcher at Steklov Mathematical Institute and at the Institute for Theoretical and Mathematical Physics (Moscow, Russia). His research interests include applications of differential-geometric methods in quantum field theory and his main results are related to 2D sigma models.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060