北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 清华-BIMSA微分几何会议
清华-BIMSA微分几何会议
为了促进国内微分几何方向青年学者学术交流与合作,共同探讨微分几何最新研究成果与未来发展方向,我们将于 2024 年 10 月 25 日至 28 日在北京雁栖湖应用数学研究院举办“清华-BIMSA 微分几何会议”。
组织者
杨晓奎 , 张良迪
演讲者
Daguang Chen ( 清华大学 )
胡鹰翔 ( 北京航空航天大学 )
苏晓羽 ( 北京邮电大学 )
徐国义 ( 清华大学 )
张良迪 ( 北京雁栖湖应用数学研究院 )
周杰 ( Capital Normal University )
日期
2024年10月25日 至 28日
位置
Weekday Time Venue Online ID Password
周一,周五,周六,周日 09:00 - 18:00 A3-4-101 - - -
日程安排
时间\日期 10-26
周六
09:00-09:50 徐国义
10:05-10:55 胡鹰翔
10:55-11:45 苏晓羽
14:00-14:50 Daguang Chen
15:05-15:55 张良迪
15:55-16:45 周杰

*本页面所有时间均为北京时间(GMT+8)。

议程
    2024-10-26

    09:00-09:50 徐国义

    The first Neumann eigenvalue and the width

    The sharp lower bound of the first Neumann eigenvalue on convex domain or compact manifolds with non-negative Ricci curvature had been studied for a long time by Payne-Weinberger (1960’s), Li-Yau and Zhong-Yang (1980’s), later developed by Kroger (1990’s) and Klartag (2010’s). And the corresponding rigidity is obtained by Hang-Wang (2000’s), and also by Klartag (2010’s). We will firstly give a survey on the former results and their methods. Then we will present our recent result about the quantitative stability part of this problem, which links the difference between the first Neumann eigenvalue and its sharp lower bound with the width of convex planar domain. This is a joint work with Haibin Wang, and the talk will be in blackboard.

    10:05-10:55 胡鹰翔

    Prescribed Lp curvature problem

    In this talk, I will talk about the existence of a strictly convex even solution to the Lp prescribed curvature problem. The key idea is to combine a new gradient estimate with Chow-Wang’s geometric lemma to obtain the C^0 and C^2 estimate simultaneously. This is a joint work with M. N. Ivaki.

    10:55-11:45 苏晓羽

    Picard Groups of Spectral Varieties and Moduli of Higgs Sheaves

    In this talk, I will introduce some basic concepts about the moduli of Higgs bundles over a curve. Then we consider the surface case and study the moduli spaces via the corresponding Hitchin maps. We try to work out Picard groups of the corresponding spectral surfaces which can be identified as generic fibers of the Hitchin maps. When generic fibers are nonempty, we can say more about the moduli spaces, for example, when the moduli is nonempty. This is a joint work with Bin Wang.

    14:00-14:50 Daguang Chen

    Eigenvalue Estimates of the Laplacian under Dirichlet and Robin Boundary Conditions

    In this talk, we will present the estimation of eigenvalues of the Laplacian operator under Dirichlet and Robin boundary conditions. We will begin by discussing universal inequalities associated with the Laplacian under Dirichlet boundary conditions and their connection to Li-Yau inequalities. We will also talk about the Bossel-Daners inequality of the Laplacian with Robin boundary on Riemannian manifolds. We will explain the inequality in detail and discuss their application. This talk is based on the joint work with Professor Qingming Cheng (Fukuoka University) and Professor Haizhong Li (Tsinghua University).

    15:05-15:55 张良迪

    New curvature characterizations of spherical space forms and complex projective spaces

    In this talk, we introduce a new positivity notion for curvature of Riemannian manifolds and obtain characterizations for spherical space forms and the complex projective space. This is a joint work with Prof. Xiaokui Yang.

    15:55-16:45 周杰

    Optimal volume bound and volume growth for Ricci-nonnegative manifolds with positive biRicci curvature

    In this presentation, we will discuss Gromov’s conjecture on the volume bound of Riemannian manifolds with nonnegative Ricci curvature and positive scalar curvature and its variant. As natural analogies, we care about the volume bound and volume growth of Ricci-nonnegative manifolds with positive bi-Ricci curvature and get the optimal bound. This is a joint work with Prof. Jintian Zhu from Westlake University.

北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060