北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Bioinformatics Techniques and Theories \(ICBS\)
Bioinformatics Techniques and Theories
This course introduces the fundamental theories, core concepts, and essential techniques of bioinformatics, an interdisciplinary field that integrates biology, statistics, and computer science. Bioinformatics focuses on employing computational methods to process and analyze complex biological data, thereby addressing practical biological problems.

The course covers foundational knowledge of molecular biology and bioinformatics, the use of commonly employed bioinformatics databases, the basic principles and tools for sequence alignment, as well as the application of statistics and machine learning in bioinformatics. Additionally, it delves into advanced topics such as protein information analysis, genome-wide association studies (GWAS), transcriptome data analysis, and systems biology approaches including gene regulatory networks and multi-omics data integration.

This course aims to provide learners with a solid theoretical foundation and practical skills in biology, helping them master core methods and tools in bioinformatics and supporting their exploration of this rapidly evolving field.
Professor Lars Aake Andersson
讲师
杨登程
日期
2025年03月20日 至 06月12日
位置
Weekday Time Venue Online ID Password
周四 13:30 - 16:55 A3-1-103 ZOOM 12 815 762 8413 BIMSA
课程大纲
Chapter 1: Molecular Biology and Bioinformatics
Fundamentals of molecular biology: Structure and function of DNA, RNA, and proteins.
Central dogma: Processes and mechanisms of transcription, translation, and replication.
Introduction to bioinformatics: Definition, history, and major applications.
Chapter 2: Common Bioinformatics Databases
Categories of bioinformatics databases: Sequence, structural, and functional databases.
Overview of key databases: GenBank, UniProt, PDB, Ensembl, and others.
Techniques for data retrieval, download, and integration.
Chapter 3: Sequence Alignment and Advanced Analysis
Pairwise sequence alignment: Basics, global and local alignment algorithms (Needleman-Wunsch and Smith-Waterman).
Substitution matrices and scoring standards (e.g., PAM, BLOSUM).
Multiple sequence alignment: Concepts, tools (ClustalW, MUSCLE, MAFFT), and interpretation.
Chapter 4: Statistics and Machine Learning in Bioinformatics
Biostatistics Fundamentals: Descriptive and inferential statistics (mean, variance, t-test, ANOVA, chi-square test).
Data Visualization: Heatmaps, volcano plots, and principal component analysis (PCA).
Machine Learning Basics: Supervised learning, unsupervised learning, and deep learning.
Applications in Bioinformatics: Gene biomarker discovery, disease classification models, and clustering analysis.
Chapter 5: Protein Information Analysis
Protein structure and function: Levels of protein structure (primary to quaternary).
Protein function prediction: Motif, active site, and functional domain identification.
Protein-protein interaction analysis and structural modeling.
Chapter 6: Genomics and Transcriptomics
Whole-genome sequencing and genome assembly techniques.
Genome-wide association studies (GWAS): Principles, workflow, and case studies.
Transcriptome data analysis: RNA-Seq data preprocessing, differential expression analysis.
Single-cell transcriptomics: Techniques and applications.
Chapter 7: Systems Biology
Gene regulatory networks and protein interaction network construction and analysis.
Multi-omics data integration: Combining genomics, transcriptomics, and proteomics.
听众
Undergraduate , Advanced Undergraduate , Graduate , 博士后 , Researcher
视频公开
不公开
笔记公开
不公开
语言
中文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060