北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA-BIT Differential Geometry Workshop
BIMSA-BIT Differential Geometry Workshop
组织者
河井公大朗 , 钱超
演讲者
史鹏帅 ( Beijing Institute of Technology )
Hikaru Yamamoto ( Tsukuba University )
Naoto Yotsutani ( Shizuoka University )
周胜铉 ( BICMR )
日期
2025年12月13日 至 13日
位置
Weekday Time Venue Online ID Password
周六 09:00 - 17:00 A3-4-301 ZOOM 11 435 529 7909 BIMSA
日程安排
时间\日期 12-13
周六
10:00-11:00 Hikaru Yamamoto
11:30-12:30 史鹏帅
14:00-15:00 Naoto Yotsutani
15:30-16:30 周胜铉

*本页面所有时间均为北京时间(GMT+8)。

议程
    2025-12-13

    10:00-11:00 Hikaru Yamamoto

    Critical norm blow-up for the harmonic map heat flow

    A harmonic map heat flow admits a global (long-time) solution if the target manifold has nonpositive sectional curvature, by the classical theorem of Eells and Sampson. However, for general target manifolds without curvature assumptions, the flow may develop a singularity in finite time. In this talk, we focus on such finite-time blow-up and its characterization. At the maximal finite time, it is known that the "limsup" of the critical norm of the gradient of the map diverges to infinity. Recently, in joint work with Hideyuki Miura and Jin Takahashi, we proved that the "liminf" also diverges to infinity. I will outline the proof of this result.

    11:30-12:30 史鹏帅

    Spectral flow and scalar curvature on spin manifolds

    It is well-known since Lichnerowicz that the index theory of Dirac operators plays an important role in the study of scalar curvature on spin manifolds. The spectral flow is an odd-dimensional counterpart of the Fredholm index. We will discuss how the spectral flow can be applied to solving questions related to scalar curvature, including the long neck problem, band width problem, quantitative estimate, in the odd-dimensional case.

    14:00-15:00 Naoto Yotsutani

    Projective bundles that admit coupled Kähler–Einstein metrics but no KE metrics

    Hultgren proved that the existence of coupled Kähler–Einstein (cKE) metrics on toric Fano manifolds can be characterized in terms of the barycenters of collections of associated polytopes. He also constructed an example of a toric Fano fourfold admitting a two-coupled KE metric but no ordinary KE metric. In this talk, we present higher-dimensional generalizations of his example, which yields a family of projective bundles that admit cKE metrics but not KE metrics. Moreover, we show that no such example exists among toric Fano threefolds for any k-coupled KE metric. This is joint work with Y. Hashimoto.

    15:30-16:30 周胜铉

    Examples related to Ricci limits

    In this talk, we will recall some examples related to Ricci limit spaces: (1). For any $n\ge 3$, there exists an n-dimensional Ricci limit space has no open subset which is topologically a manifold. This generalizes a result of Hupp-Naber-Wang. As a corollary, our example provides a collapsed sequence of boundary free manifolds whose limit has a dense boundary with infinitely many connected components. (2). For any $n\ge 4$, there exists a sequence of n-dimensional tori with Ricci lower bound that converges to a singular space. This answers a question posted by Petrunin and Brue-Naber-Semola. In the 4-dimensional case, we prove that the Gromov-Hausdorff limit of tori with a two-sided Ricci bound and a diameter bound is always a topological torus. (3). For any discrete $\Gamma\lt O(4)$, there exist a small constant $\epsilon>0$ and a complete Riemannian 4-manifold $(M,g)$ with nonnegative Ricci curvature, asymptotic to $C(S_{\epsilon}^3/\Gamma)$. This answers a question posed by Brue-Pigati-Semola.

北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060