北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > An overview of the modern non-Hamiltonian mechanics
An overview of the modern non-Hamiltonian mechanics
This course is a part of a bigger project related to what we call “geometrizing mechanics". The project includes a lot of stages all united under the same goal, to find relevant geometric formalism to describe the internal structure of differential equations governing physical systems, or to deduce those equations from the physical properties of a system via a geometric structure.

The most studied example of this approach involves conservative mechanical systems expressed in natural variables. A convenient formalism for this is the Hamiltonian mechanics, though it is very restrictive since we have to preserve symplectic/Poisson structure and Hamiltonian. This classical description dates back to Lagrange, Jacobi and Poincaré, although these works did not use the modern language of Souriau and Arnold.

When dissipation or interaction enters the play, another formalism is needed and we have now Dirac mechanics, Herglotz principle and vakonomic dynamics, Gauss-Hertz principle and nonholonomic mechanics, port-Hamiltonian mechanics, contact mechanics, optimal control theory, etc. This course aims to provide an overview of popular non-Hamiltonian equations of motion, their underlying geometric structures, and structure-preserving integrators.

We will start by recalling the classical Hamiltonian formalism, then we introduce some proper terminology for various non-Hamiltonian systems and describe the desired output of the procedure together with some methods and examples.
Professor Lars Aake Andersson
讲师
安德烈·茨加诺夫
日期
2025年09月16日 至 12月11日
位置
Weekday Time Venue Online ID Password
周二,周四 13:30 - 15:05 Shuangqing ZOOM 13 637 734 0280 BIMSA
参考资料
[1] Piotr Hebda, Elements of Classical Point Mechanics, Volume I: Dirac’s Theory of Constraints, 2024.
[2] Arjan van der Schaft; Dimitri Jeltsema, Port-Hamiltonian Systems Theory: An Introductory Overview, 2014.
[3] Blas M. Vinagre, Time in Control Theory: On Concepts, Measures and Uses, 2024.
[4] Jorge Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems, 2002.
[5] C. Woernle, Multibody Systems: An Introduction to the Kinematics and Dynamics of Systems of Rigid Bodies, Springer, Berlin, 2024.
[6] F. Jean, Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning, Springer, Cham, 2014.
视频公开
公开
笔记公开
公开
讲师介绍
Andrey Tsiganov currently works at the Department of Computational Physics, Saint Petersburg State University, Russia. His main research interests are integrable and superintegrable systems in classical and quantum mechanics, nonholonomic and vakonomic mechanics, geometry and topology of dynamical systems, see profile at https://www.researchgate.net/profile/Andrey-Tsiganov. He is one of the organizers of the BIMSA Integrable System Seminar, see https://researchseminars.org/seminar/BIMSA-ISS and https://sites.google.com/view/bimsa-iss.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060