北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > An introduction to the Berkovich Projective line and complex p-adic dynamics
An introduction to the Berkovich Projective line and complex p-adic dynamics
Let $p$ be any place of the rational field $\mathbb{Q}$ (can be the infinite place) and denote by $\mathbb{Q}_p$ the completion of $\mathbb{Q}$ with respect to the $p$-adic absolute value. We then set $C_p$ to be the completion of an algebraic closure of $\mathbb{Q}_p$. When $p$ is the infinite place of $\mathbb{Q}$, the field $C_p$, which is then the usual complex plane, is topologically nice (Haussdorf, simply connected, locally compact, spherically complete). However, when $p$ is a finite place, that is, a rational prime, the field $C_p$ is topologically "awful" (it is Haussdorf and complete, but totally disconnected, not locally compact and not spherically complete).

In the first part of this course, we will see that the Berkovich affine line, defined as the set of semi-norms on the ring of polynomials $C_p[X]$, turns $C_p$ into a "nice" topological space. More precisely, we will show that it is Haussdorf, locally compact, uniquely path-connected (so, it's a tree) and contains $C_p$ as a dense subset. After studying the topological properties of this space, we will start the study of complex $p$-adic dynamics on the Berkovich projective line, which is the "perfect" non-archimedean analogue of the classical complex dynamics.
Professor Lars Aake Andersson
讲师
阿尔诺·普莱西斯
日期
2025年04月01日 至 06月17日
位置
Weekday Time Venue Online ID Password
周二 13:30 - 16:55 A3-2-201 ZOOM 02 518 868 7656 BIMSA
修课要求
none
课程大纲
Class 1-7 : Construction and topological study of the projective Berkovich line.

Class 8-12 : Dynamics on the projective Berkovich Line
参考资料
The main reference of this course is Baker and Rumely's book entitled "Potential Theory and Dynamics on the Berkovich Projective Line".
听众
Advanced Undergraduate , Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Arnaud Plessis is an assistant professor at BIMSA from September 2023. His research is mainly focused on diophantine geometry. He obtained his Phd. thesis in 2019 at Université de Caen Normandie. Before joining BIMSA, he has been Attaché Temporaire d'Enseignement et de Recherche (a kind of postdoctoral with course duties) at Université Grenoble Alpes from September 2019 to August 2020. Then, he has been postdoctor at Morningside Center of Mathematics, Chinese Academy of Sciences, from September 2020 to August 2023.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060