北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > An introduction to height theory, geometric viewpoint
An introduction to height theory, geometric viewpoint
In this course, we will establish a general geometric process allowing us to construct heights on any projective algebraic variety V. We recover the Weil height, which has been studied in the first semester from an arithmetic viewpoint, when V is the projective space. When V is assumed to be abelian, the constructed height is then the well-known Néron-Tate height. Next, we will see that the Néron-Tate height has similar properties to that of Weil. Finally, we will prove that the Néron-Tate height on elliptic curves has a (explicit) decomposition into local height functions, which are defined arithmetically. Time permitting, we will give some applications of this decomposition.
Professor Lars Aake Andersson
讲师
阿尔诺·普莱西斯
日期
2024年03月21日 至 06月20日
位置
Weekday Time Venue Online ID Password
周四 13:30 - 16:55 A3-2-303 ZOOM 02 518 868 7656 BIMSA
修课要求
Master in Number theory and/or Algebraic geometry. REMARK : It is not necessary to have followed the first semester course to understand this one.
课程大纲
Class 1 : I will recall the two definitions of the Weil height given in the first semester (one involving the Mahler measure and the other one using the places of a number field) explaining why they are not easy to generalize. We will then see a third way of defining it, which is the "good" approach to construct heights on projective algebraic varieties.

Class 2-4 : Construction of heights on projective algebraic varieties.

Class 5 : Statements of basic results on Néron-Tate heights.

Class 6-7 : Background on elliptic curves.

Class 8-10 : Decomposition of the Néron-Tate height on elliptic curves into local height functions.

Class 11-12 : Applications of this decomposition.
参考资料
-For the construction of heights, see D. Mumford "Abelian varieties"
- Regarding the decomposition into local height functions, I will follow the book "Advanced topics in the Arithmetic of Elliptic curves" by J. Silverman.
听众
Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Arnaud Plessis is an assistant professor at BIMSA from September 2023. His research is mainly focused on diophantine geometry. He obtained his Phd. thesis in 2019 at Université de Caen Normandie. Before joining BIMSA, he has been Attaché Temporaire d'Enseignement et de Recherche (a kind of postdoctoral with course duties) at Université Grenoble Alpes from September 2019 to August 2020. Then, he has been postdoctor at Morningside Center of Mathematics, Chinese Academy of Sciences, from September 2020 to August 2023.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060