Algebraic Geometry Codes and Huawei’s 8th Problem
Since Goppa constructed algebraic geometric(AG) codes from several rational places, the study of AG codes becomes an important instrument in coding theory. For a given AG code, the famous Riemann–Roch theorem gives a non-trivial lower bound, named Goppa bound, for the minimum distance in a very general setting. I will present a brief introduction to AG Codes and explain in detail its relation to Huawei’s 8th problem.
讲师
日期
2021年09月17日 至 12月03日
修课要求
Basic knowledge of Number Theory and Algebraic Geometry
参考资料
Algebraic Function Fields and Codes
听众
Graduate
视频公开
公开
笔记公开
公开
语言
中文
讲师介绍
胡创强,2021年秋季入职BIMSA。主要研究领域包括:编码理论,函数域及数论,奇点理论。近年来在量子码,代数几何码,Drinfeld模,椭圆奇点,丘-李代数等课题研究中取得了一系列学术成就。在《IEEE Trans. on IT.》《Finite Fields and Their Applications》《Designs, Codes and Cryptography》等著名学术期刊上发表论文13篇。先后多次应邀出席国内外学术会议并作大会报告。