北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 杨宇红

杨宇红

     教授    
教授 杨宇红

单位: 清华丘成桐数学科学中心, 北京雁栖湖应用数学研究院

团队: 统计、概率和数据科学

邮箱: yangyuhong@bimsa.cn

教育经历


  • 1993 - 1996      耶鲁大学      统计学
  • 1988 - 1993      University of Illinois at Urbana-Champaign      统计学
  • 1984 - 1988      中国科技大学      数学

出版物


  • [1] J Peng, Y Li, Y Yang, On optimality of Mallows model averaging, Journal of the American Statistical Association, 1, 1-12 (2024)
  • [2] J Zhang, Z Chen, Y Yang, W Xu, Variable importance based interaction modelling with an application on initial spread of COVID-19 in China, Journal of the Royal Statistical Society Series C: Applied Statistics, 73(5) (2024)
  • [3] X Tang, J Zhang, Y He, X Zhang, Z Lin, S Partarrieu, EB Hanna, Z Ren et al., Explainable multi-task learning for multi-modality biological data analysis, Nature communications, 14(1) (2023)
  • [4] J Zhang, Y Yang, J Ding, Information criteria for model selection, Wiley Interdisciplinary Reviews: Computational Statistics, 15(5) (2023)
  • [5] E Diao, G Wang, J Zhan, Y Yang, J Ding, V Tarokh, Pruning deep neural networks from a sparsity perspective, arXiv preprint arXiv:2302.05601 (2023)
  • [6] J Zhang, J Ding, Y Yang, Is a classification procedure good enough?—A goodness-of-fit assessment tool for classification learning, Journal of the American Statistical Association, 118(542), 1115-1125 (2023)
  • [7] Z Zhan, Y Li, Y Yang, C Lin, Model averaging for semiparametric varying coefficient quantile regression models, Annals of the Institute of Statistical Mathematics, 75(4), 649-681 (2023)
  • [8] Z Chen, J Liao, W Xu, Y Yang, Multifold cross-validation model averaging for generalized additive partial linear models, Journal of Computational and Graphical Statistics, 32(4), 1649-1659 (2023)
  • [9] G Wang, J Ding, Y Yang, Regression with set-valued categorical predictors, Statistica Sinica, 33(4), 2545-2560 (2023)
  • [10] J Zhang, J Ding, Y Yang, Targeted cross-validation, Bernoulli, 29(1), 377-402 (2023)
  • [11] B Zhao, Y Yang, Minimax rates of convergence for nonparametric location-scale models, Other (2023)
  • [12] C Lin, J Peng, Y Qin, Y Li, Y Yang, Optimal integrating learning for split questionnaire design type data, Journal of Computational and Graphical Statistics, 32(3), 1009-1023 (2023)
  • [13] J Peng, Y Yang, On improvability of model selection by model averaging, Journal of Econometrics, 229(2), 246-262 (2022)
  • [14] W Qian, CA Rolling, G Cheng, Y Yang, Combining forecasts for universally optimal performance, International Journal of Forecasting, 38(1), 193-208 (2022)
  • [15] C Ye, L Zhang, M Han, Y Yu, B Zhao, Y Yang, Combining predictions of auto insurance claims, Econometrics, 10(2) (2022)
  • [16] Z Zhan, Y Yang, Profile electoral college cross-validation, Information Sciences, 586, 24-40 (2022)
  • [17] Y Yu, Y Yang, Y Yang, Performance assessment of high-dimensional variable identification, Statistica Sinica, 32(2), 695-718 (2022)
  • [18] X Wang, J Zhang, M Hong, Y Yang, J Ding, Parallel assisted learning, IEEE Transactions on Signal Processing, 70, 5848-5858 (2022)
  • [19] W Yang, G Wang, J Ding, Y Yang, A theoretical understanding of neural network compression from sparse linear approximation, arXiv preprint arXiv:2206.05604 (2022)
  • [20] Z Chen, J Zhang, W Xu, Y Yang, Consistency of BIC model averaging, Statistica Sinica, 32, 635-640 (2022)
  • [21] J Zhang, J Ding, Y Yang, Supplementary Material for “Is a Classification Procedure Good Enough?-A Goodness-of-Fit Assessment Tool for Classification Learning” (2022)
  • [22] C Ye, L Zhang, M Han, Y Yu, B Zhao, Y Yang, Combining Predictions of Auto Insurance Claims. Econometrics 10: 19, s Note: MDPI stays neutral with regard to jurisdictional claims in published … (2022)
  • [23] Y Chen, Y Yang, The one standard error rule for model selection: Does it work?, Stats, 4(4), 868-892 (2021)
  • [24] W Yang, Y Yang, A stabilized dense network approach for high-dimensional prediction, International Joint Conference on Neural Networks, 1-8 (2021)
  • [25] Y Li, R Li, Y Qin, C Lin, Y Yang, Robust group variable screening based on maximum Lq‐likelihood estimation, Statistics in Medicine, 40(30), 6818-6834 (2021)
  • [26] S Arya, Y Yang, To update or not to update? Delayed nonparametric bandits with randomized allocation, Stat, 10(1) (2021)
  • [27] Y Zhang, C Rolling, Y Yang, Estimating and forecasting dynamic correlation matrices: A nonlinear common factor approach, Journal of Multivariate Analysis, 183, 104710 (2021)
  • [28] J Ding, Y Yang, V Tarokh, 12 Fundamental Limits in Model Selection for Modern Data Analysis, Information-Theoretic Methods in Data Science, 359 (2021)
  • [29] S Arya, Y Yang, Randomized allocation with nonparametric estimation for contextual multi-armed bandits with delayed rewards, Statistics & Probability Letters, 164 (2020)
  • [30] W Yang, Z Cao, Q Chen, Y Yang, G Yang, Confidence calibration on multiclass classification in medical imaging, IEEE International Conference on Data Mining (ICDM), 1364-1369 (2020)
  • [31] C Zheng, D Ferrari, Y Yang, Model selection confidence sets by likelihood ratio testing, Statistica Sinica, 29(2), 827-851 (2019)
  • [32] W Qian, CA Rolling, G Cheng, Y Yang, On the forecast combination puzzle, Econometrics, 7(3) (2019)
  • [33] CA Rolling, Y Yang, D Velez, Combining estimates of conditional treatment effects, Econometric Theory, 35(6), 1089-1110 (2019)
  • [34] C Ye, Y Yang, High-dimensional adaptive minimax sparse estimation with interactions, IEEE Transactions on Information Theory, 65(9), 5367-5379 (2019)
  • [35] C Lu, Y Yang, On assessing binary regression models based on ungrouped data, Biometrics, 75(1), 5-12 (2019)
  • [36] G Yang, Y Yang, Minimax-rate adaptive nonparametric regression with unknown correlations of errors, Science China Mathematics, 62, 227-244 (2019)
  • [37] J Ding, V Tarokh, Y Yang, Model selection techniques: An overview, IEEE Signal Processing Magazine, 35(6), 16-34 (2018)
  • [38] C Ye, Y Yang, Y Yang, Sparsity oriented importance learning for high-dimensional linear regression, Journal of the American Statistical Association, 113(524), 1797-1812 (2018)
  • [39] J Ding, V Tarokh, Y Yang, Bridging AIC and BIC: a new criterion for autoregression, IEEE Transactions on Information Theory, 64(6), 4024-4043 (2017)
  • [40] C Lu, K Liu, L Li, Y Yang, Sensitivity of measuring the progress in financial risk protection to survey design and its socioeconomic and demographic determinants: a case study in Rwanda, Social Science & Medicine, 178, 11-18 (2017)
  • [41] J Cockreham, F Gao, Y Yang, Metric entropy of 𝑞-hulls in Banach spaces of type-𝑝, Proceedings of the American Mathematical Society, 145(12), 5205-5214 (2017)
  • [42] F Lv, G Yang, J Wu, C Liu, Y Yang, Anomaly Detection for Categorical Observations Using Latent Gaussian Process, Neural Information Processing (2017)
  • [43] C Ye, Y Yang, Y Yang, Supplemental Materials for “Sparsity Oriented Importance Learning for High-dimensional Linear Regression” (2017)
  • [44] Y Yang, Cross-Validation for Optimal and Reproducible Statistical Learning (2017)
  • [45] W Qian, Y Yang, Kernel estimation and model combination in a bandit problem with covariates, Journal of Machine Learning Research, 17(149), 1-37 (2016)
  • [46] W Qian, Y Yang, Randomized allocation with arm elimination in a bandit problem with covariates (2016)
  • [47] WYY Yang, Toward an objective and reproducible model choice via variable selection deviation, Biometrics (2016)
  • [48] J Ding, V Tarokh, Y Yang, Optimal variable selection in regression models (2016)
  • [49] Y Zhang, Y Yang, Cross-validation for selecting a model selection procedure, Journal of Econometrics, 187, 95-112 (2015)
  • [50] D Ferrari, Y Yang, Confidence sets for model selection by F-testing, Statistica Sinica, 1637-1658 (2015)
  • [51] G Cheng, Y Yang, Forecast combination with outlier protection, International journal of forecasting, 31(2), 223-237 (2015)
  • [52] X Zhu, Y Yang, Variable selection after screening: with or without data splitting?, Computational Statistics, 30, 191-203 (2015)
  • [53] G Cheng, S Wang, Y Yang, Forecast combination under heavy-tailed errors, Econometrics, 3(4), 797-824 (2015)
  • [54] Y Nan, Y Yang, Y Yang, C Ye, MY Yang, Package ‘glmvsd’ (2015)
  • [55] CA Rolling, Y Yang, Model selection for estimating treatment effects, Journal of the Royal Statistical Society Series B: Statistical Methodology (2014)
  • [56] Y Nan, Y Yang, Variable selection diagnostics measures for high-dimensional regression, Journal of Computational and Graphical Statistics, 23(3), 636-656 (2014)
  • [57] Z Wang, S Paterlini, F Gao, Y Yang, Adaptive minimax regression estimation over sparse lq-hulls, The Journal of Machine Learning Research, 15(1), 1675-1711 (2014)
  • [58] W Qian, Y Yang, Model selection via standard error adjusted adaptive lasso, Annals of the Institute of Statistical Mathematics, 65, 295-318 (2013)
  • [59] GA Rempala, Y Yang, On permutation procedures for strong control in multiple testing with gene expression data, Statistics and its interface, 6(1) (2013)
  • [60] F Gao, CK Ing, Y Yang, Metric entropy and sparse linear approximation of ℓq-hulls for 0< q≤ 1, Journal of Approximation Theory, 166, 42-55 (2013)
  • [61] S Liu, Y Yang, Mixing partially linear regression models, Sankhya A, 75, 74-95 (2013)
  • [62] X Wei, Y Yang, Robust forecast combinations, Journal of Econometrics, 166(2), 224-236 (2012)
  • [63] S Liu, Y Yang, Combining models in longitudinal data analysis, Annals of the Institute of Statistical Mathematics, 64, 233-254 (2012)
  • [64] Z SU, G ZHU, X CHEN, Y YANG, Supplementary material for “Sparse Envelope Model: Efficient Estimation and Response Variable Selection in Multivariate Linear Regression”, Biometrika, 99(1), 1-21 (2012)
  • [65] W Liu, Y Yang, Kernal Estimation in a Bandit Problem with Covariates, University of Minnesota (2012)
  • [66] W Liu, Y Yang, Parametric or nonparametric? A parametricness index for model selection (2011)
  • [67] Z Wang, S Paterlini, F Gao, Y Yang, Adaptive Minimax Estimation over Sparse$\ell_q$-Hulls, Other (2011)
  • [68] L Chen, Y Yang, Combining statistical procedures, High-dimensional data analysis, 275-298 (2011)
  • [69] Y Yang, G Cheng, EB Laber, SA Murphy, Discussion of" Adaptive confidence intervals for the test error in classification", JASA, 106, 924-931 (2011)
  • [70] D Ferrari, Y Yang, Maximum lq-likelihood method, Annals of Statistics, 38, 573-583 (2010)
  • [71] D Ferrari, Y Yang, Maximum Lq-likelihood estimation, Annals of Statistics, 38, 753-783 (2009)
  • [72] K Shan, Y Yang, Combining regression quantile estimators, Statistica Sinica, 1171-1191 (2009)
  • [73] Y Yang, Localized model selection for regression, Econometric Theory, 24(2), 472-492 (2008)
  • [74] Y Yang, Review of “Elements of Information Theory”, by T. Cover and J. Thomas, Wiley, JASA, 103 (2008)
  • [75] Y Yang, Consistency of cross validation for comparing regression procedures (2007)
  • [76] Y Yang, Prediction/estimation with simple linear models: Is it really that simple?, Econometric Theory, 23(1), 1-36 (2007)
  • [77] L Chen, P Giannakouros, Y Yang, Model combining in factorial data analysis, Journal of Statistical Planning and Inference, 137(9), 2920-2934 (2007)
  • [78] Z Chen, Y Yang, Time Series Models for Forecasting: Testing or Combining?, Studies in Nonlinear Dynamics & Econometrics, 11(1) (2007)
  • [79] D Ferrari, Y Yang, Estimation of tail probability via the maximum Lq-likelihood method, University of Minnesota (2007)
  • [80] Y Yang, How powerful can any regression learning procedure be, Proceedings of the 11th International Conference on Artificial Intelligence (2007)
  • [81] Y Yang, Comparing learning methods for classification, Statistica Sinica, 635-657 (2006)
  • [82] Y Yang, Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation, Biometrika, 92(4), 937-950 (2005)
  • [83] Z Yuan, Y Yang, Combining linear regression models: When and How?, Journal of the American Statistical Association, 100(472) (2005)
  • [84] Y Yang, Review of “Information Theory, Inference, and Learning Algorithms”, by DJC MacKay, Cambridge University Press, JASA, 100, 1461-1462 (2005)
  • [85] H Zou, Y Yang, Combining time series models for forecasting, International Journal of Forecasting, 20(1), 69-84 (2004)
  • [86] Y Yang, Combining forecasting procedures: some theoretical results, Econometric Theory, 20(1), 176-222 (2004)
  • [87] Y Yang, Aggregating regression procedures to improve performance, Bernoulli, 25-47 (2004)
  • [88] Z Chen, Y Yang, Assessing forecast accuracy measures, Preprint Series (2004)
  • [89] M Paik, Y Yang, Combining nearest neighbor classifiers versus cross-validation selection, Statistical applications in genetics and molecular biology, 3(1) (2004)
  • [90] Y Yang, Review of “Nonlinear Estimation and Classification”, by DD Denison, MH Hansen, CC Holmes, B. Mallick, and B. Yu (eds.), JASA, 99, 561-561 (2004)
  • [91] Y Yang, Regression with multiple candidate models: selecting or mixing?, Statistica Sinica, 783-809 (2003)
  • [92] Y Yang, D Zhu, Randomized allocation with nonparametric estimation for a multi-armed bandit problem with covariates, The Annals of Statistics, 30(1), 100-121 (2002)
  • [93] J Opsomer, Y Wang, Y Yang, Nonparametric regression with correlated errors, Statistical science, 134-153 (2001)
  • [94] Y Yang, Adaptive regression by mixing, Journal of the American Statistical Association, 96(454), 574-588 (2001)
  • [95] Y Yang, Nonparametric regression with dependent errors (2001)
  • [96] Y Yang, Minimax rate adaptive estimation over continuous hyper-parameters, IEEE Transactions on Information Theory, 47(5), 2081-2085 (2001)
  • [97] Y Yang, Combining different procedures for adaptive regression, Journal of multivariate analysis, 74(1), 135-161 (2000)
  • [98] Y Yang, Mixing strategies for density estimation, Annals of Statistics, 75-87 (2000)
  • [99] Y Yang, Adaptive estimation in pattern recognition by combining different procedures, Statistica Sinica, 1069-1089 (2000)
  • [100] Y Yang, Comment on “Finite sample performance guarantees of fusers for function estimators”[Information Fusion 1 (2000) 35–44], Information Fusion, 1(2), 99-100 (2000)
  • [101] Y Yang, A Barron, Information-theoretic determination of minimax rates of convergence, Annals of Statistics, 1564-1599 (1999)
  • [102] Y Yang, Minimax nonparametric classification. I. Rates of convergence, IEEE Transactions on Information Theory, 45(7), 2271-2284 (1999)
  • [103] Y Yang, Model selection for nonparametric regression, Statistica Sinica, 475-499 (1999)
  • [104] Y Yang, Minimax nonparametric classification. II. Model selection for adaptation, IEEE Transactions on Information Theory, 45(7), 2285-2292 (1999)
  • [105] Y Yang, Aggregating regression procedures for a better performance (1999)
  • [106] Y Yang, AR Barron, An asymptotic property of model selection criteria, IEEE Transactions on Information Theory, 44(1), 95-116 (1998)
  • [107] Y Yang, On adaptive function estimation, Iowa State University. Department of Statistics. Statistical Laboratory (1997)
  • [108] Y Yang, Minimax optimal density estimation, Yale University (1996)
  • [109] A Barron, Y Yang, B Yu, Asymptotically optimal function estimation by minimum complexity criteria, Proceedings of 1994 IEEE International Symposium on Information Theory, 38 (1994)
  • [110] J Zhang, J Ding, Y Yang, A binary regression adaptive goodness-of-fit Test (BAGofT) (1911)
  • [111] J Du, Y Yang, J Ding, Adaptive Continual Learning: Rapid Adaptation and Knowledge Refinement
  • [112] J Ding, Y Yang, Statistica Sinica Preprint No: SS-2021-0332
  • [113] G Wang, J Ding, Y Yang, S1 Table of notations
  • [114] J Zhang, W Xu, Y Yang, Statistica Sinica Preprint No: SS-2021-0145
  • [115] Y Yang, Y Yang, Statistica Sinica Preprint No: SS-2019-0210
  • [116] Y Yu, Y Yang, Y Yang, Supplemental Materials for “Performance Assessment of High-dimensional Variable Identification”
  • [117] Y Yang, Z Chen, ADAPTIVE FORECAST COMBINING
  • [118] Y Nan, Y Yang, Supplementary Material: Additional Numerical Results
  • [119] D FERRARI, Y YANG, S1 Proof of Theorem 2.3
  • [120] Y Yang, G Cheng, Discussion of “Adaptive confidence intervals for the test error in classification” by Eric B. Laber and Susan A. Murphy
  • [121] Y Yang, Nonparametric Regression and Prediction with Dependent Errors (Running Title: Regression and Prediction under Dependence)
  • [122] Y Yang, Nonparametric Classification: Rate of Convergence and Adaptation
  • [123] W Liu, Y Yang, SUPPLEMENT TO “PARAMETRIC OR NONPARAMETRIC? A PARAMETRICNESS INDEX FOR MODEL SELECTION”

 

更新时间: 2025-07-26 09:00:08


北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060