雍稳安
教授
单位: 清华大学, 北京雁栖湖应用数学研究院
团队: 计算数学
邮箱: yongwenan@bimsa.cn
研究方向: 应用偏微分方程的理论分析和数值方法
个人简介
雍稳安主要研究领域是偏微分方程、数值方法和非平衡态热力学。系统地建立了双曲偏微分方程松弛问题的数学理论(包括零松弛极限的存在稳定性,整体光滑解的存在性和长时间行为,Chapman-Enskog展开的有效性,边界条件的提法及其极限边界条件的导出,边界控制等),找到了这类问题的内在共性(Yong's stability condition)。创立了非平衡态热力学的守恒耗散理论(CDF),并成功地应用于生物、地学等领域,提出了已被实验验证的描述可压缩粘弹性流体流动的数学模型(Yong's model)。在计算流体力学方面,证明了工程上广泛使用的格子Boltzmann方法的稳定收敛性,并针对这种数值方法率先提出了单点边界格式(ZY method), 已被广泛使用。主要结果发表在Arch. Rational Mech. Anal., Automatica, J. Comput. Phys., Philos. Trans. Royal Soc. A, Siam 系列等相关领域的知名国际刊物上,有些结果已被若干权威专著和教材所采纳。
研究兴趣
- Mathematical Modeling, Machine Learning
- Non-equilibrium Thermodynamics
- Numerical Methods, Computational Fluid Dynamics
- Applied Partial Differential Equations
教育经历
- 1989 - 1992 海德堡大学 博士 Dr.rer.nat.
- 1984 - 1987 中国科学院计算数学与科学工程计算研究所 硕士
- 1980 - 1984 中山大学 学士
- - 2005 海德堡大学 Habilitation
工作经历
- 2021 - 北京雁栖湖应用数学研究院 Professor
- 2005 - 清华大学 荣誉教授
- 1998 - 2005 海德堡大学 Assistant Professor (C1)
- 1993 - 1998 海德堡大学 副研究员
- 1993 - 1993 苏黎世联邦理工学院 博士后
- 1987 - 1989 北京应用物理与计算数学研究所 助理教授
荣誉与奖项
- 2018 科学咨询委员会会员
出版物
- [1] Zhiting Ma, Juntao Huang, Wen-An Yong, Uniform accuracy of implicit-explicit backward differentiation formulas (IMEX-BDF) for linear hyperbolic relaxation systems, Mathematics of Computation (2025)
- [2] Zhiting Ma, Wen-An Yong, Yi Zhu, A thermodynamics-based turbulence model for isothermal compressible flows (2025)
- [3] Y Chen, Q Huang, WA Yong, R Zhang, Poisson quadrature method of moments for 2D kinetic equations with velocity of constant magnitude, Multiscale Modeling & Simulation, 23(1), 577-610 (2025)
- [4] Q Huang, C Rohde, WA Yong, R Zhang, A hyperbolic relaxation system of the incompressible Navier-Stokes equations with artificial compressibility, arXiv preprint arXiv:2411.15575 (2024)
- [5] Zhou, Yizhou, and Wen-An Yong, Boundary conditions for hyperbolic relaxation systems with characteristic boundaries, arXiv preprint arXiv:2409.01916 (2024)
- [6] Yang, Haitian, and Wen-An Yong, Feedback boundary control of multi-dimensional hyperbolic systems with relaxation, Automatica, 167, 111791 (2024)
- [7] Zhang, Ruixi, Qian Huang, and Wen-An Yong, Stability analysis of an extended quadrature method of moments for kinetic equations, SIAM Journal on Mathematical Analysis, 56(4), 4687-4711 (2024)
- [8] Zhang, Ruixi, Yihong Chen, Qian Huang, and Wen-An Yong, Dissipativeness of the hyperbolic quadrature method of moments for kinetic equations, arXiv preprint arXiv:2406.13931 (2024)
- [9] Chen, Yihong, Qian Huang, and Wen-An Yong, Discrete-Velocity-Direction Models of BGK-Type with Minimum Entropy: II—Weighted Models, Journal of Scientific Computing, 99(3), 84 (2024)
- [10] Zhao, Jin, and Wen-An Yong, Vectorial finite-difference-based lattice Boltzmann method: Consistency, boundary schemes and stability analysis, Journal of Computational and Applied Mathematics, 441, 115677 (2024)
- [11] H Yang, WA Yong, Boundary control of multi-dimensional discrete-velocity kinetic models, arXiv preprint arXiv:2312.10581 (2023)
- [12] H Yang, WA Yong, Feedback boundary control of 2-D hyperbolic systems with relaxation, arXiv preprint arXiv:2310.09707 (2023)
- [13] Z Ma, WA Yong, Nonrelativistic limit of the Euler‐HMPapproximation models arising in radiation hydrodynamics, Mathematical Methods in the Applied Sciences, 46(13), 13741-13780 (2023)
- [14] J Huang, Y Cheng, AJ Christlieb, LF Roberts, WA Yong, Machine learning moment closure models for the radiative transfer equation II: Enforcing global hyperbolicity in gradient-based closures, Multiscale Modeling & Simulation, 21(2), 489-512 (2023)
- [15] Qian Huang, Yihong Chen, Wen-An Yong, Discrete-velocity-direction models of BGK-type with minimum entropy: I. Basic idea, Journal of Scientific Computing, 95(3), 80 (2023)
- [16] Zhiting Ma,Wen-An Yong, Non-relativistic limit of the Euler-$HMP_N$ approximation model arising in radiation hydrodynamics, Math. Meth. Appl. Sci., 46(2023), 13741-13780
- [17] Juntao Huang, Yingda Cheng, Andrew J. Christlieb, Luke F. Roberts, and Wen-An Yong, Machine learning moment closure models for the radiative transfer equation II: enforcing global hyperbolicity in gradient based closures, Multiscale Modeling and Simulation, 21(2023), 2, 489-512
- [18] Qian Huang , Julian Koellermeier , Wen-An Yong, Equilibrium stability analysis of hyperbolic shallow water moment equations, Mathematical Methods in the Applied Sciences, 45(10), 6459-6480 (2022)
- [19] Fansheng Xiong, and Wen-An Yong, Learning stable seismic wave equations for porous media from real data, Geophysical Journal International, 230(1), 349-362 (2022)
- [20] Jin Zhao, Weifeng Zhao, Zhiting Ma, Wen-An Yong, and Bin Dong, Finding models of heat conduction via machine learning, International Journal of Heat and Mass Transfer, 185, 122396 (2022)
- [21] XX Cao, WA Yong, Construction of boundary conditions for hyperbolic relaxation approximations II: Jin-Xin relaxation model, arXiv preprint arXiv:2203.04069, (), -, (2022)
- [22] YZ Zhou, W. Yong, Boundary conditions for hyperbolic relaxation systems with characteristic boundaries of type II, Journal of Differential Equations, 310, 198-234 (2022)
- [23] Juntao Huang & Yizhou Zhou & Wen-An Yong, Data-driven discovery of multiscale chemical reactions governed by the law of mass action, J. Comput. Phys. 448:11 (2022), 110743.
- [24] Yizhou Zhou & Wen-An Yong, Boundary conditions for hyperbolic relaxation systems with characteristic boundaries of type II, J. Differ. Equations 310:5 (2022), 198–234.
- [25] Xiaxia Cao, Wen-An Yong, Construction of Boundary Conditions for Hyperbolic Relaxation Approximations. II: Jin-Xin Relaxation Model, Quarterly of Applied Mathematics (2022)
- [26] Huang J , Zhou Y , Yong W A , Data-driven discovery of multiscale chemical reactions governed by the law of mass action, Journal of Computational Physics, 448, 110743 (2022)
- [27] W Zhao, WA Yong, Boundary conditions for kinetic theory‐based models II: A linearized moment system, Mathematical Methods in the Applied Sciences, 44(18), 14148-14172 (2021)
- [28] Juntao Huang, Zhiting Ma, Yizhou Zhou, and Wen-An Yong, Learning thermodynamically stable and Galilean invariant partial differential equations for non-equilibrium flows, Journal of Non-Equilibrium Thermodynamics, 46(4), 355-370 (2021)
- [29] Yong W A, Zhou Y, Recent advances on boundary conditions for equations in nonequilibrium thermodynamics, , 13(9), 1710 (2021)
- [30] Y Zhou, WA Yong, Boundary conditions for hyperbolic relaxation systems with characteristic boundaries of type I, Journal of Differential Equations, 281, 289-332 (2021)
- [31] Pierre Lallemand, Li-Shi Luo, Manfred Krafczyk, Wen-An Yong, The lattice Boltzmann method for nearly incompressible flows, Journal of Computational Physics, 431, 109713 (2021)
- [32] Yizhou Zhou & Wen-An Yong, Boundary conditions for hyperbolic relaxation systems with characteristic boundaries of type I, J. Differ. Equations 281 (2021), 289–332.
- [33] Wen-An Yong, Weifeng Zhao, Juntao Huang, Lattice Boltzmann method for stochastic convection-diffusion equations, SIAM/ASA Journal on Uncertainty Quantification, 9(2), 536-563 (2021)
- [34] Weifeng Zhao, Wen-An Yong, Boundary conditions for kinetic theory based models II. a linearized moment system, Math. Meth. Appl. Sci., 44(18), 14148-14172 (2021)
- [35] Wen-An Yong & Yizhou Zhou, Recent advances on boundary conditions for equations in nonequilibrium thermodynamics, Symmetry 13:9(2021), 1710. https://doi.org/10.3390/sym13091710
- [36] WA Yong, Y Zhou, Recent Advances on Boundary Conditions for Equations in Nonequilibrium Thermodynamics. Symmetry 2021, 13, 1710, Mathematical Aspects in Non-equilibrium Thermodynamics, 69 (2021)
- [37] W Zhao, WA Yong, Weighted L2-stability of a discrete kinetic approximation for the incompressible Navier–Stokes equations on bounded domains, Journal of Computational and Applied Mathematics, 376, 112820 (2020)
- [38] J Huang, Z Ma, Y Zhou, WA Yong, Learning Interpretable and Thermodynamically Stable Partial Differential Equations., arXiv (2020)
- [39] Wen-An Yong, Weifeng Zhao, Numerical analysis of the lattice Boltzmann method for the Boussinesq equations, Journal of Scientific Computing, 84, 1-21 (2020)
- [40] Y Zhou, WA Yong, Construction of boundary conditions for hyperbolic relaxation approximations I: The linearized Suliciu model, Mathematical Models and Methods in Applied Sciences, 30(07), 1407-1439 (2020)
- [41] Jiawei Liu, Wen-An Yong, Jianxin Liu, Zhenwei Guo, Stable finite-difference methods for elastic wave modeling with characteristic boundary conditions, Mathematics, 8(6), 1039 (2020)
- [42] J Zhao, Z Zhang, WA Yong, Approximation of the multi-dimensional incompressible Navier-Stokes equations by discrete-velocity vector-BGK models, Journal of Mathematical Analysis and Applications, 486(2), 123901 (2020)
- [43] W Zhao, WA Yong, Boundary Scheme for a Discrete Kinetic Approximation of the Navier–Stokes Equations, Journal of Scientific Computing, 82, 1-17 (2020)
- [44] Qian Huang, Shuiqing Li, Wen-An Yong, Stability analysis of quadrature-based moment methods for kinetic equations, SIAM Journal on Applied Mathematics, 80(1), 206-231 (2020)
- [45] Weifeng Zhao,Wen-An Yong, Boundary scheme for a discrete kinetic approximation of the Navier-Stokes equations, J. Sci. Comput., 82(3), UNSP 71. (2020)
- [46] Jin Zhao, Zhimin Zhang, Wen-An Yong, Approximation of the multi-dimensional incompressible Navier-Stokes equations by discretevelocity vector-BGK models, J. Math. Anal. Appl., 486(2), 123901 (2020)
- [47] Yizhou Zhou & Wen-An Yong, Construction of boundary conditions for hyperbolic relaxation approximations. I: the linearized Suliciu model, Math. Models and Methods Appl. Sci. 30:7 (2020), 1407–1439.
- [48] Weifeng Zhao, Wen-An Yong, Weighted L2-stability of a discrete kinetic approximation for the incompressible Navier-Stokes equations on bounded domains, J. Comput. Appl. Math., 376, 112820 (2020)
- [49] Jin Zhao, Zhimin Zhang, Wen-An Yong, Vector-type boundary schemes for the lattice Boltzmann method based on vector-BGK models, SIAM Journal on Scientific Computing, 42(5), B1250-B1270 (2020)
- [50] Weifeng Zhao, Wen-An Yong, Relaxation-rate formula for the entropic lattice Boltzmann model, Chinese Physics B, 28(11), 114701 (2019)
- [51] Wen-An Yong, Boundary stabilization of hyperbolic balance laws with characteristic boundaries, Automatica, 101, 252-257 (2019)
- [52] Weifeng Zhao, Juntao Huang, Wen-An Yong, Boundary conditions for kinetic theory based models I: Lattice Boltzmann models, Multiscale Modeling & Simulation, 17(2), 854-872 (2019)
- [53] Zaibao Yang, Wen-An Yong, Yi Zhu, Generalized hydrodynamics and the classical hydrodynamic limit, arXiv preprint arXiv:1809.01611 (2018)
- [54] W Zhao, L Wang, WA Yong, On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier–Stokes equations, Physica A: Statistical Mechanics and its Applications, 492, 1570-1580 (2018)
- [55] Weifeng Zhao,Liang Wang,Wen-An Yong, On a tworelaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations, Physica A, 492, 1570–1580 (2018)
- [56] Vincent Giovangigli, Wen-An Yong, Viscosity and Internal Energy Relaxation: Error Estimates, Nonlinear Analysis-Real World Applications, 43, 213–244 (2018)
- [57] Vincent Giovangigli, Zaibao Yang, Wen-An Yong, Relaxation limit and initial-layers for a class of hyperbolic-parabolic systems, SIAM Journal on Mathematical Analysis, 50(4), 4655-4697 (2018)
- [58] Z YANG, WA Yong, Y Zhu, A Generalized hydrodynamics and its classical hydrodynamic limit, arXiv preprint arXiv:1809.01611 (2018)
- [59] W Zhao, WA Yong, A family of single-node second-order boundary schemes for the lattice Boltzmann method, arXiv preprint arXiv:1712.08288 (2017)
- [60] Vincent Giovangigli, Wen-An Yong, Asymptotic stability and relaxation for fast chemistry fluids, Nonlinear Analysis, 159, 208-263 (2017)
- [61] Weifeng Zhao, Wen-An Yong, Maxwell iteration for the lattice Boltzmann method with diffusive scaling, Physical Review E, 95(3), 033311 (2017)
- [62] W Zhao, WA Yong, LS Luo, Stability analysis of a class of globally hyperbolic moment system, Communications in Mathematical Sciences, 15(3), 609-633 (2017)
- [63] Weifeng Zhao, Wen-An Yong, Single-node second-order boundary schemes for the lattice Boltzmann method, Journal of Computational Physics, 329, 1-15 (2017)
- [64] Weifeng Zhao,Wen-An Yong,Li-Shi Luo, Stability analysis of a class of globally hyperbolic moment systems, Commun. Math. Sci., 15(3), 609–633 (2017)
- [65] Xiaokai Huo, Wen-An Yong, Global existence for viscoelastic fluids with infinite Weissenberg number, Communications in Mathematical Sciences, 15(4), 1129-1140 (2017)
- [66] L. Hong, J. Chen, W.-A. Yong, Novel dissipative properties of the master equation, Journal of Mathematical Physics, 57(10) (2016)
- [67] V Giovangigli, WA Yong, Erratum:``Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion'', Kinetic and Related Models, 9(4), 813-813 (2016)
- [68] Wen-An Yong, Xiaokai Huo, Structural stability of a 1D compressible viscoelastic fluid model, Journal of Differential Equations, 261(2), 1264-1284 (2016)
- [69] Michael Herty, Wen-An Yong, Feedback boundary control of linear hyperbolic systems with relaxation, Automatica, 69, 12-17 (2016)
- [70] JW Liu, WA Yong, Stability Analysis of the Biot/squirt and Double-porosity Models for Wave Propagation in Saturated Porous Media, EAGE Conference and Exhibition(1), 1-5 (2016)
- [71] Zexi Hu , Juntao Huang , Wen-An Yong, Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions, Physical Review E, 93(4), 043320 (2016)
- [72] J Huang, Z Hu, WA Yong, Second-order curved boundary treatments of the lattice Boltzmann method for convection–diffusion equations, Journal of Computational Physics, 310, 26-44 (2016)
- [73] Wen-An Yong, Weifeng Zhao, Li-Shi Luo, Theory of the lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration, Physical Review E, 93(3), 033310 (2016)
- [74] Yeping Li, Wen-An Yong, Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations, Commun. Math. Sci., 14(1), 233–247 (2016)
- [75] Jiawei Liu, Wen-An Yong, Stability analysis of the Biot/squirt models for wave propagation in saturated porous media, Geophysical Journal International, 204(1), 535-543 (2016)
- [76] Juntao Huang,Wen-An Yong,Liu Hong, Generalization of the Kullback-Leibler divergence in the Tsallis statistics, J. Math. Anal. Appl., 436(2016), 501–512 (2016)
- [77] Juntao Huang, Zexi Hu, Wen-An Yong, Second-order curved boundary treatments of the lattice Boltzmann method for convectiondiffusion equations, J. Comput. Phys., 310(2), 26–44 (2016)
- [78] Liu Hong, Chen Jia, Yi Zhu, Wen-An Yong, Novel dissipation properties of the master equation, J. Math. Phys., 57, 103303 (2016)
- [79] Y Li, WA Yong, Zero Mach number limit of the compressible Navier–Stokes–Korteweg equations, Communications in Mathematical Sciences, 14(1), 233-247 (2016)
- [80] Yajing Huang, Liu Hong, Wen-An Yong, Partial equilibrium approximations in apoptosis. II. The death-inducing signaling complex subsystem, Mathematical biosciences, 270, 126-134 (2015)
- [81] Liu Hong, Zaibao Yang, Yi Zhu, Wen-An Yong, A novel construction of thermodynamically compatible models and its correspondence with Boltzmann-equation-based moment-closure hierarchies, Journal of Non-Equilibrium Thermodynamics, 40(4), 247-256 (2015)
- [82] WA Yong, CFL condition, Boltzmann's H‐theorem, Onsager reciprocal relations and beyond, Mathematical Methods in the Applied Sciences, 38(18), 4479-4486 (2015)
- [83] Yeping Li, Wen-An Yong, The zero Mach number limit of the three-dimensional compressible viscous magnetohydrodynamic equations, Chinese Annals of Mathematics, Series B, 36(6), 1043-1054 (2015)
- [84] J Huang, WA Yong, Boundary conditions of the lattice Boltzmann method for convection–diffusion equations, Journal of Computational Physics, 300, 70-91 (2015)
- [85] Liu Hong, Ya-Jing Huang, Wen-An Yong, A kinetic model for cell damage caused by oligomer formation, Biophysical journal, 109(7), 1338-1346 (2015)
- [86] Juntao Huang, Hao Wu, Wen-An Yong, On initial conditions for the lattice Boltzmann method, Communications in Computational Physics, 18(2), 450-468 (2015)
- [87] Y Zhu, L Hong, Z Yang, WA Yong, Conservation-dissipation formalism of irreversible thermodynamics, Journal of Non-Equilibrium Thermodynamics, 40(2), 67-74 (2015)
- [88] YP Li, WA Yong, Quasi-neutral limit in a 3D compressible Navier–Stokes–Poisson–Korteweg model, IMA Journal of Applied Mathematics, 80(3), 712-727 (2015)
- [89] Z Yang, WA Yong, Validity of the Chapman–Enskog expansion for a class of hyperbolic relaxation systems, Journal of Differential Equations, 258(8), 2745-2766 (2015)
- [90] Zaibao Yang, Wen-An Yong, Yi Zhu, A rigorous derivation of multicomponent diffusion laws, arXiv preprint arXiv:1502.03516 (2015)
- [91] Vincent Giovangigli, Wen-An Yong, Viscosity and Internal Energy Relaxation: Symmetrization and Chapman-Enskog Expansion, Kinetic and Related Models, 8(1), 79–116 (2015)
- [92] Zaibao Yang,Wen-An Yong, Validity of the Chapman-Enskog expansion for a class of hyperbolic relaxation systems, J. Differ. Equations, 258(8), 2745–2766 (2015)
- [93] Yi Zhu, Liu Hong, Zaibao Yang, Wen-An Yong, Conservationdissipation formalism of irreversible thermodynamics, J. Non-Equilib. Thermodyn., 40(2), 67–74 (2015)
- [94] Yeping Li, Wen-An Yong, Quasi-neutral limit in a 3D compressible Navier-Stokes-Poisson-Korteweg model, IMA J. Appl. Math., 80(3), 712–727 (2015)
- [95] Juntao Huang, Wen-An Yong, Boundary conditions of the lattice Boltzmann method for convection-diffusion equations, J. Comput. Phys., 300(1), 70–91 (2015)
- [96] Liu Hong & Zaibao Yang & Yi Zhu & Wen-An Yong, A novel construction of thermodynamically compatible models and its correspondence with Boltzmann-equation-based moment-closure hierarchies, J. Non-Equilib. Thermodyn. 40:4 (2015), 247–256.
- [97] Wen-An Yong, CFL condition, Boltzmann’s H-theorem, Onsager reciprocal relations and beyond, Math. Meth. Appl. Sci. 38:18 (2015), 4479–4486.
- [98] L Hong, Z Yang, Y Zhu, WA Yong, Boltzmann-Equation Based Derivation of Balance Laws in Irreversible Thermodynamics, arXiv preprint arXiv:1411.7102 (2014)
- [99] V Giovangigli, WA Yong, Volume viscosity and internal energy relaxation: Error estimates, (2014)
- [100] Juntao Huang, Li Zhang, Wen-An Yong, Moran Wang, On complex boundary conditions of the lattice Boltzmann method for diffusion equations, Appl. Math. Mech., 35(3), 305–312 (2014)
- [101] Zaibao Yang, Wen-An Yong, Asymptotic analysis of the lattice Boltzmann method for generalized Newtonian fluid flows, Multiscale Modeling & Simulation, 12(3), 1028-1045 (2014)
- [102] Ya-Jing Huang, Wen-An Yong, Partial equilibrium approximations in apoptosis. I. The intracellular-signaling subsystem, Mathematical Biosciences, 246(1), 27-37 (2013)
- [103] L Hong, WA Yong, Simple moment-closure model for the self-assembly of breakable amyloid filaments, Biophysical journal, 104(3), 533-540 (2013)
- [104] Liu Hong, Wen-An Yong, Simple moment-closure model for the self-assembling of breakable amyloid filaments, Biophys. J., 104(2013), 533–540 (2013)
- [105] Wen-An Yong, Conservation-dissipation structure of chemical reaction systems, Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 86(6), 067101 (2012)
- [106] Wen-An Yong, Li-Shi Luo, Accuracy of the viscous stress in the lattice Boltzmann equation with simple boundary conditions, Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 86(6), 065701 (2012)
- [107] YJ Huang, WA Yong, Partial equilibrium approximations in Apoptosis, arXiv preprint arXiv:1209.6417 (2012)
- [108] YJ Huang, WA Yong, A stable simplification of a fas-signaling pathway model for apoptosis, IEEE 6th International Conference on Systems Biology (ISB), 125-134 (2012)
- [109] H Yan, WA Yong, Stability of steady solutions to reaction-hyperbolic systems for axonal transport, Journal of Hyperbolic Differential Equations, 9(02), 325-337 (2012)
- [110] Ya-Jing Huang, Wen-An Yong, A stable simplification of a Fassignaling pathway model for apoptosis, 2012 IEEE 6th International Conference on Systems Biology (ISB)(125–134) (2012)
- [111] Hao Yan, Wen-An Yong, Stability of steady solutions to reactionhyperbolic systems for axonal transport, J. Hyper. Partial Differ. Eqns., 9(2), 325–337 (2012)
- [112] H Yan, WA Yong, WEAK ENTROPY SOLUTIONS OF NONLINEAR REACTION–HYPERBOLIC SYSTEMS for AXONAL TRANSPORT, Mathematical Models and Methods in Applied Sciences, 21(10), 2135-2154 (2011)
- [113] Jiang Xu,Wen-An Yong, A note on incompressible limit for compressible Euler equations, Mathematical Methods in the Applied Sciences, 34(7), 831-838 (2011)
- [114] Jiang Xu, Wen-An Yong, Zero-electron-mass limit of hydrodynamic models for plasmas, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 141(2), 431-447 (2011)
- [115] Hao Yan, Wen-An Yong, Weak entropy solutions of nonlinear reaction-hyperbolic systems for axonal transport, M3AS (Math. Models and Methods Appl. Sci.), 21(10), 2135–2154 (2011)
- [116] Jiang Xu, Wen-An Yong, et al, On the Relaxation-time Limits in the Bipolar Hydrodynamic Models for Semiconductors, Some Problems on Nonlinear Hyperbolic Equations and Applications (2010)
- [117] J Xu, WA Yong, On the relaxation-time limits in bipolar hydrodynamic models for semiconductors, Some Problems On Nonlinear Hyperbolic Equations And Applications, 258-279 (2010)
- [118] Jiang Xu, Wen-An Yong, Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors, Discrete and Continuous Dynamical Systems-Series A (DCDS-A), 25(4), 1319 (2009)
- [119] Jiang Xu, Wen-An Yong, Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors, Journal of Differential Equations, 247(6), 1777-1795 (2009)
- [120] Wen-An Yong, An Onsager-like relation for the lattice Boltzmann method, Computers & Mathematics with Applications, 58(5), 862-866 (2009)
- [121] Shuichi Kawashima, Wen-An Yong, Decay estimates for hyperbolic balance laws, Zeitschrift für Analysis und ihre Anwendungen, 28(1), 1-33 (2009)
- [122] Michael Junk, Wen-An Yong, Weighted L2-stability of the lattice Boltzmann method, SIAM J. Numer. Anal., 47(3), 1651–1665 (2009)
- [123] M Junk, WA Yong, Weighted$\mathbb{L}^2$-Stability of the Lattice Boltzmann Method, SIAM Journal on Numerical Analysis, 47(3), 1651-1665 (2009)
- [124] C Rohde, WA Yong, Dissipative entropy and global smooth solutions in radiation hydrodynamics and magnetohydrodynamics, Mathematical Models and Methods in Applied Sciences, 18(12), 2151-2174 (2008)
- [125] Wen-An Yong, An interesting class of partial differential equations, Journal of mathematical physics, 49(3) (2008)
- [126] A. Dressel, Wen-An Yong, et al, Traveling-Wave Solutions for Hyperbolic Systems of Balance Laws, , 485-492 (2008)
- [127] C. Rohde, N. Tiemann, Wen-An Yong, et al, Weak and Classical Solutions for a Model Problem in Radiation Hydrodynamics, , 2008, 891-899 (2008)
- [128] Christian Rohde, Wen-An Yong, Dissipative entropy and global smooth solutions for radiation hydrodynamics and magnetohydrodynamics, M3AS (Mathematical Models and Methods in Applied Sciences, 18(12), 2151–2174 (2008)
- [129] W YONG, An Interesting Class of Hyperbolic Balance Laws, arXiv preprint arXiv:0707.3708 (2007)
- [130] Christian Rohde, Wen-An Yong, The nonrelativistic limit in radiation hydrodynamics: I. Weak entropy solutions for a model problem, Journal of Differential Equations, 234(1), 91-109 (2007)
- [131] WA Yong, SMOOTH SHOCK PROFILES FOR HYPERBOLIC SYSTEMS OF BALANCE LAWS (Mathematical Analysis in Fluid and Gas Dynamics), 数理解析研究所講究録, 1536, 140-150 (2007)
- [132] YJ Peng, YG Wang, WA Yong, Quasi-neutral limit of the non-isentropic Euler–Poisson system, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 136(5), 1013-1026 (2006)
- [133] A Dressel, WA Yong, Existence of traveling-wave solutions for hyperbolic systems of balance laws, Archive for rational mechanics and analysis, 182, 49-75 (2006)
- [134] M. K. Banda, W.-A. Yong, A. Klar, A stability notion for lattice Boltzmann equations, SIAM Journal on Scientific Computing, 27(6), 2098-2111 (2006)
- [135] Yue-Jun Peng,Ya-Guang Wang,Wen-An Yong, Quasineutral limit of the nonisentropic Euler-Poisson system, Proc. R. Soc. Edinb. A, 136A(5), 1013–1026 (2006)
- [136] Alexander Dressel, Wen-An Yong, Existence of traveling wave solutions for hyperbolic systems of balance laws, Arch. Rational Mech. Anal., 182(2), 49–75 (2006)
- [137] Wen-An Yong, Willi Jager, On hyperbolic relaxation problems, , 495-520 (2005)
- [138] Wen-An Yong, Li-Shi Luo, Nonexistence ofTheorem for Some Lattice Boltzmann Models, Journal of statistical physics, 121, 91-103 (2005)
- [139] Y Brenier, WA Yong, Derivation of particle, string, and membrane motions from the Born–Infeld electromagnetism, Journal of mathematical physics, 46(6) (2005)
- [140] Wen-An Yong, A note on the zero Mach number limit of compressible Euler equations, Proc. Amer. Math. Soc. 133 (2005), 3079–3085.
- [141] Yann Brenier, Wen-An Yong, Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism, J. Math. Phys., 46(062305) (2005)
- [142] WA Yong, A note on the zero Mach number limit of compressible Euler equations, Proceedings of the American Mathematical Society, 133(10), 3079-3085 (2005)
- [143] A Dressel, Existence of smooth shock profiles for hyperbolic systems with relaxation, (2005)
- [144] Shuichi Kawashima, Wen-An Yong, Dissipative structure and entropy for hyperbolic systems of balance laws, Archive for rational mechanics and analysis, 174(3), 345-364 (2004)
- [145] Wen-An Yong, Diffusive relaxation limit of multidimensional isentropic hydrodynamical models for semiconductors, SIAM Journal on Applied Mathematics, 64(5), 1737-1748 (2004)
- [146] WA Yong, Entropy and Global Solutions for Hyperbolic Systems of Balance Laws, Verlag nicht ermittelbar (2004)
- [147] M. K. Banda,W.-A. Yong,A. Klar, stability structure for lattice Boltzmann equations: some computational results, PAMM: Proceedings in Applied Mathematics and Mechanics, 3(1), 72-75 (2003)
- [148] WA Yong, LS Luo, Nonexistence of H theorems for the athermal lattice Boltzmann models with polynomial equilibria, Physical Review E, 67(5), 051105 (2003)
- [149] Wen-An Yong, Li-Shi Luo, Nonexistence of H theorems for athermal lattice Boltzmann models with polynomial equilibria, Phys. Rev. E, 67(051105) (2003)
- [150] Michael Junk, Wen-An Yong, Rigorous Navier-Stokes limit of the lattice Boltzmann equation, Asymptotic Anal., 35(2), 165–185 (2003)
- [151] M Junk, WA Yong, Rigorous Navier–Stokes limit of the lattice Boltzmann equation, Asymptotic Analysis, 35(2), 165-185 (2003)
- [152] Wen-An Yong, Basic structures of hyperbolic relaxation systems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 132(5), 1259-1274 (2002)
- [153] 王男, 蜂屋弘之, 中村敏明, 双方向伝搬音波を用いた伝搬時間差の高精度計測, 電子情報通信学会技術研究報告= IEICE technical report: 信学技報, 102(278), 33-38 (2002)
- [154] Iuliu Sorin Pop, Wen-An Yong, A numerical approach to degenerate parabolic equations, Numerische Mathematik, 92, 357-381 (2002)
- [155] H Liu, WA Yong, Time-asymptotic stability of boundary-layers for a hyperbolic relaxation system, Communications in Partial Differential Equations, 26(7-8), 1323-1343 (2001)
- [156] Corrado Lattanzio, Wen-An Yong, Hyperbolic-parabolic singular limits for first-order nonlinear systems, Communications in Partial Differential Equations, 26(5-6), 939-964 (2001)
- [157] Wen-An Yong, et al, Remarks on Hyperbolic Relaxation Systems, , 140, 921-929 (2001)
- [158] Wen-An Yong, Basic aspects of hyperbolic relaxation systems, Advances in the theory of shock waves, 259-305 (2001)
- [159] Hailiang Liu, Wen-An Yong, Time-asymptotic stability of boundarylayers for a hyperbolic relaxation system, Commun. in Partial Differ. Equations, 26((7&8)), 1323–1343 (2001)
- [160] TP Liu, G Métivier, J Smoller, B Temple, WA Yong, K Zumbrun, G Métivier, Stability of multidimensional shocks, Advances in the theory of shock waves, 25-103 (2001)
- [161] G Métivier, WA Yong, Advances in the Theory of Shock Waves, Birkhäuser (2001)
- [162] TP Liu, G Métivier, J Smoller, B Temple, WA Yong, K Zumbrun, J Smoller et al., Shock wave solutions of the Einstein equations: a general theory with examples, Advances in the theory of shock waves, 105-258 (2001)
- [163] TP Liu, G Métivier, J Smoller, B Temple, WA Yong, K Zumbrun, TP Liu, Well-Posedness Theory for Hyperbolic Systems of Conservation Laws, Advances in the Theory of Shock Waves, 1-24 (2001)
- [164] Wen-An Yong, Kevin Zumbrun, Existence of relaxation shock profiles for hyperbolic conseration laws, Siam. J. Appl. Math., 60(3), 1565–1575 (2000)
- [165] Iuliu Sorin Pop, Wen-An Yong, On the existence and uniqueness of a solution for an elliptic problem, Studia Univ. Babes-Bolyai Math, 45, 97-107 (2000)
- [166] K Zumbrun, WA Yong, Existence of relaxation shock profiles for hyperbolic conservation laws, SIAM Journal on Applied Mathematics, 60(5), 1565-1575 (2000)
- [167] H Liu, WA Yong, Admissible boundary conditions and stability of boundary-layers for a hyperbolic relaxation system, preprint (2000)
- [168] WA Yong, A simple approach to Glimm's interaction estimates, Applied mathematics letters, 12(2), 29-34 (1999)
- [169] Wen-An Yong, A simple approach to Glimm’s interaction estimates, Appl. Math. Lett., 12(1), 29-34 (1999)
- [170] Wen-An Yong, A difference scheme for a stiff system of conservation laws, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 128(6), 1403-1414 (1998)
- [171] Wen-An Yong, Error analysis of difference methods for moving boundary problems of hyperbolic systems, Institut Mittag-Leffler (Stockholm)(6), 1997/98. (1997)
- [172] IS Pop, WA Yong, A maximum principle based numerical approach to porous medium equation, Proceedings of the 14th Conference on Scientific Computing, 207-218 (1997)
- [173] Wen-An Yong, Existence and asymptotic stability of traveling wave solutions of a model system for reacting flow, Nonlinear Analysis: Theory, Methods & Applications, 26(11), 1791-1809 (1996)
- [174] WA Yong, IS Pop, A numerical approach to porous medium equations, IWR (1996)
- [175] Wen-An Yong, Numerical analysis of relaxation schemes for scalar conservation laws, , IWR Preprint 95–30 (1995)
- [176] WA Yong, Difference Approximations to the Global W^1,∞-solutions of the Isentropic Gas Equations, Eidgenössische Technische Hochschule [ETH] Zürich. Seminar für Angewandte (1993)
- [177] Wen-An Yong, et al, Singular perturbations of first-order hyperbolic systems, , 43, 597–604 (1992)
- [178] W Yong, Explicit dissipative schemes for boundary problems of generalized Schrödinger systems, Acta Mathematicae Applicatae Sinica, 7(2), 173-186 (1991)
- [179] Wen-An Yong, Explicit dissipative difference schemes for boundary problems of generalized Schr¨odinger systems, Acta Math. Appl. Sin. (English Ser.), 7(1991), 173–186 (1991)
- [180] Wen-An Yong, You-lan Zhu, Convergence of difference methods for nonlinear problems with moving boundaries, Science China Mathematics, 33(5), 537-550 (1990)
- [181] You-lan Zhu, Wen-An Yong, On stability and convergence of difference schemes for quasilinear hyperbolic initial-boundary-value problems, , 1297, 210-244 (1987)
- [182] Wen-An Yong, You-lan Zhu, Stability of implicit difference schemes with space and time-dependent coefficients, J. Comp. Math., 5(1987), 281–286 (1987)
- [183] J Koellermeier, M Castro, E Pimentel-Garcia, TM de la Luna et al., Shallow water moment models: Hyperbolicity, stability, and numerical methods,
- [184] J Huang, Y Cheng, AJ Christlieb, LF Roberts, WA Yong, Enforcing hyperbolicity in gradient-based machine learning moment closures for the radiative transfer equation, 2022 Virtual Joint Mathematics Meetings (JMM 2022)
- [185] J Huang, Z Ma, Y Zhou, WA Yong, Learning Thermodynamically Stable and Galilean Invariant PDEs for Non-equilibrium Flows,
- [186] Q HUANG, S LI, W YONG, SUPPLEMENTARY MATERIALS: STABILITY ANALYSIS OF QUADRATURE-BASED MOMENT METHODS FOR KINETIC EQUATIONS,
- [187] YG Wang, WA Yong, Quasi-neutral limit in non-isentropic Euler-Poisson systems,
- [188] J Liu, WA Yong, Stability analysis of the Biot-Rayleigh and double-porosity theories for wave propagation in saturated media,
- [189] Wen-An Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms, Journal of differential equations, 155(1), 89-132 (1999)
- [190] Wen-An Yong, Boundary conditions for hyperbolic systems with stiff source terms, Indiana University mathematics journal, 48, 115-137 (1999)
- [191] Wen-An Yong, Entropy and global existence for hyperbolic balance laws, Archive for Rational Mechanics and Analysis, 172, 247-266 (2004)
- [192] Wen-An Yong, Newtonian limit of Maxwell fluid flows, Archive for Rational Mechanics and Analysis, 214, 913-922 (2014)
- [193] Wen-An Yong, Intrinsic properties of conservation-dissipation formalism of irreversible thermodynamics, Philosophical Transactions of the Royal Society A, 378(2170), 20190177 (2020)
更新时间: 2025-07-24 17:00:10