北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 雍稳安

雍稳安

     教授    
教授 雍稳安

单位: 北京雁栖湖应用数学研究院 , 清华大学

团队: 计算数学

邮箱: yongwenan@bimsa.cn

研究方向: 应用偏微分方程的理论分析和数值方法

个人简介


雍稳安主要研究领域是偏微分方程、数值方法和非平衡态热力学。系统地建立了双曲偏微分方程松弛问题的数学理论(包括零松弛极限的存在稳定性,整体光滑解的存在性和长时间行为,Chapman-Enskog展开的有效性,边界条件的提法及其极限边界条件的导出,边界控制等),找到了这类问题的内在共性(Yong's stability condition)。创立了非平衡态热力学的守恒耗散理论(CDF),并成功地应用于生物、地学等领域,提出了已被实验验证的描述可压缩粘弹性流体流动的数学模型(Yong's model)。在计算流体力学方面,证明了工程上广泛使用的格子Boltzmann方法的稳定收敛性,并针对这种数值方法率先提出了单点边界格式(ZY method), 已被广泛使用。主要结果发表在Arch. Rational Mech. Anal., Automatica, J. Comput. Phys., Philos. Trans. Royal Soc. A, Siam 系列等相关领域的知名国际刊物上,有些结果已被若干权威专著和教材所采纳。

研究兴趣


  • Mathematical Modeling, Machine Learning
  • Non-equilibrium Thermodynamics
  • Numerical Methods, Computational Fluid Dynamics
  • Applied Partial Differential Equations

教育经历


  • 1989 - 1992      海德堡大学      博士      Dr.rer.nat.
  • 1984 - 1987      中国科学院计算数学与科学工程计算研究所      硕士
  • 1980 - 1984      中山大学      学士
  • - 2005      海德堡大学      Habilitation

工作经历


  • 2021 -      北京雁栖湖应用数学研究院      Professor
  • 2005 -      清华大学      荣誉教授
  • 1998 - 2005      海德堡大学      Assistant Professor (C1)
  • 1993 - 1998      海德堡大学      副研究员
  • 1993 - 1993      苏黎世联邦理工学院      博士后
  • 1987 - 1989      北京应用物理与计算数学研究所      助理教授

荣誉与奖项


  • 2018      科学咨询委员会会员

出版物


  • [1] Zhang, Ruixi, Qian Huang, and Wen-An Yong, Stability analysis of an extended quadrature method of moments for kinetic equations, SIAM Journal on Mathematical Analysis, 56(4), 4687-4711 (2024)
  • [2] Zhiting Ma,Wen-An Yong, Non-relativistic limit of the Euler-$HMP_N$ approximation model arising in radiation hydrodynamics, Math. Meth. Appl. Sci., 46(2023), 13741-13780
  • [3] Qian Huang, Yihong Chen, Wen-An Yong, Discrete-velocity-direction models of BGK-type with minimum entropy: I. Basic idea, Journal of Scientific Computing, 95(2023), 3
  • [4] Juntao Huang, Yingda Cheng, Andrew J. Christlieb, Luke F. Roberts, and Wen-An Yong, Machine learning moment closure models for the radiative transfer equation II: enforcing global hyperbolicity in gradient based closures, Multiscale Modeling and Simulation, 21(2023), 2, 489-512
  • [5] Fansheng Xiong, and Wen-An Yong, Learning stable seismic wave equations for porous media from real data, Geophysical Journal International, 230(1), 349-362 (2022)
  • [6] Jin Zhao, Weifeng Zhao, Zhiting Ma, Wen-An Yong, and Bin Dong, Finding models of heat conduction via machine learning, , 185, 122396 (2022)
  • [7] Juntao Huang & Yizhou Zhou & Wen-An Yong, Data-driven discovery of multiscale chemical reactions governed by the law of mass action, J. Comput. Phys. 448:11 (2022), 110743.
  • [8] Yizhou Zhou & Wen-An Yong, Boundary conditions for hyperbolic relaxation systems with characteristic boundaries of type II, J. Differ. Equations 310:5 (2022), 198–234.
  • [9] Qian Huang & Julian Koellermeier & Wen-An Yong, Equilibrium Stability Analysis of Hyperbolic Shallow Water Moment Equations, Math. Meth. Appl. Sci., accepted on February 6, 2022.
  • [10] Xiaxia Cao & Wen-An Yong, Construction of Boundary Conditions for Hyperbolic Relaxation Approximations. II: Jin-Xin Relaxation Model, Quarterly of Applied Mathematics, accepted on April 28, 2022.
  • [11] YZ Zhou, W. Yong, Boundary conditions for hyperbolic relaxation systems with characteristic boundaries of type II, J. Differ. Equ., (), -, (2022)
  • [12] XX Cao, WA Yong, CONSTRUCTION OF BOUNDARY CONDITIONS FOR HYPERBOLIC RELAXATION APPROXIMATIONS II: JIN-XIN RELAXATION MODEL, Q. Appl. Math., (), -, (2022)
  • [13] Juntao Huang, Zhiting Ma, Yizhou Zhou, and Wen-An Yong, Learning thermodynamically stable and Galilean invariant partial differential equations for non-equilibrium flows, Journal of Non-Equilibrium Thermodynamics, 46(4), 355-370 (2021)
  • [14] Yizhou Zhou & Wen-An Yong, Boundary conditions for hyperbolic relaxation systems with characteristic boundaries of type I, J. Differ. Equations 281 (2021), 289–332.
  • [15] Pierre Lallemand & Li-Shi Luo & Manfred Krafczyk & Wen-An Yong, The lattice Boltzmann method for nearly incompressible flows, J. Comput. Phys. 431 (2021), 109713
  • [16] Weifeng Zhao & Juntao Huang & Wen-An Yong, Lattice Boltzmann method for stochastic convection-diffusion equations, SIAM J. UQ. 9:2 (2021), 536–563.
  • [17] Weifeng Zhao & Wen-An Yong, Boundary conditions for kinetic theory based models II. a linearized moment system, Math. Meth. Appl. Sci. 44:18 (2021), pp.14148-14172
  • [18] Wen-An Yong & Yizhou Zhou, Recent advances on boundary conditions for equations in nonequilibrium thermodynamics, Symmetry 13:9(2021), 1710. https://doi.org/10.3390/sym13091710
  • [19] Yong W A, Zhou Y, Recent Advances on Boundary Conditions for Equations in Nonequilibrium Thermodynamics, Symmetry-Basel, (), -, (2021)
  • [20] Huang J , Zhou Y , Yong W A , Data-driven discovery of multiscale chemical reactions governed by the law of mass action, J. Comput. Phys., (), -, (2021)
  • [21] Qian Huang & Shuiqing Li & Wen-An Yong, Stability analysis of quadrature-based moment methods for kinetic equations, SIAM J. Appl. Math. 80:1 (2020), 206–231.
  • [22] Weifeng Zhao & Wen-An Yong, Boundary scheme for a discrete kinetic approximation of the Navier-Stokes equations, J. Sci. Comput. 82:3 (2020), UNSP 71.
  • [23] Wen-An Yong, Intrinsic properties of conservation-dissipation formalism of irreversible thermodynamics, Phil. Trans. R. Soc. A 378: 2170 (2020), 20190177.
  • [24] Jiawei Liu & Wen-An Yong & Jianxin Liu & Zhenwei Guo, Stable finite-difference methods for elastic wave modeling with characteristic boundary conditions, Mathematics 8:6 (2020), 1039.
  • [25] Jin Zhao & Zhimin Zhang & Wen-An Yong, Approximation of the multi-dimensional incompressible Navier-Stokes equations by discretevelocity vector-BGK models, J. Math. Anal. Appl. 486:2 (2020), 123901.
  • [26] Yizhou Zhou & Wen-An Yong, Construction of boundary conditions for hyperbolic relaxation approximations. I: the linearized Suliciu model, Math. Models and Methods Appl. Sci. 30:7 (2020), 1407–1439.
  • [27] Weifeng Zhao & Wen-An Yong, Weighted L2-stability of a discrete kinetic approximation for the incompressible Navier-Stokes equations on bounded domains, J. Comput. Appl. Math. 376 (2020), 112820.
  • [28] Wen-An Yong & Weifeng Zhao, Numerical analysis of the lattice Boltzmann method for the Boussinesq equations, J. Sci. Comput. 84:2 (2020),
  • [29] Jin Zhao & Zhimin Zhang & Wen-An Yong, Vector-type boundary schemes for the lattice Boltzmann method based on vector-BGK models, SIAM J. Sci. Comput. 42: 5(2020), 1250–1270.
  • [30] Wen-An Yong, Boundary stabilization of hyperbolic balance laws with characteristic boundaries, Automatica 101 (2019), 252–257.
  • [31] Weifeng Zhao & Juntao Huang & Wen-An Yong, Boundary conditions for kinetic theory based models I: lattice Boltzmann models, Multiscale Model. Simul. 17(2) (2019), 854-872.
  • [32] Weifeng Zhao & Wen-An Yong, Relaxation-rate formula for the entropic lattice Boltzmann model, Chin. Phys. B 28(11) (2019), 114701.
  • [33] Weifeng Zhao & Liang Wang & Wen-An Yong, On a tworelaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations, Physica A 492 (2018) 1570–1580.
  • [34] Vincent Giovangigli & Wen-An Yong, Volume Viscosity and Internal Energy Relaxation: Error Estimates, Nonlinear Analysis-Real World Applications 43 (2018), 213–244.
  • [35] Vincent Giovangigli & Zaibao Yang & Wen-An Yong, Relaxation Limit and Initial-Layers for a Class of Hyperbolic-Parabolic Systems, SIAM J. Math. Anal. 50 (2018), 4655–4697.
  • [36] Zaibao Yang, Wen-An Yong, Yi Zhu, Generalized hydrodynamics and the classical hydrodynamic limit(2018)
  • [37] Weifeng Zhao & Wen-An Yong, Single-node second-order boundary schemes for the lattice Boltzmann method, J. Comput. Phys. 329 (2017), 1–15.
  • [38] Weifeng Zhao & Wen-An Yong & Li-Shi Luo, Stability analysis of a class of globally hyperbolic moment systems, Commun. Math. Sci. 15:3 (2017), 609–633.
  • [39] Xiaokai Huo & Wen-An Yong, Global existence for viscoelastic fluids with infinite Weissenberg number, Commun. Math. Sci. 15:4 (2017), 1129–1140.
  • [40] Weifeng Zhao & Wen-An Yong, Maxwell iteration for the lattice Boltzmann method with diffusive scaling, Phys. Rev. E 95:3 (2017), 033311.
  • [41] Vincent Giovangigli & Wen-An Yong, Asymptotic stability and relaxation for fast chemistry fluids, Nonlinear Analysis-Theory Methods & Applications 159 (2017), 208–263.
  • [42] Yeping Li & Wen-An Yong, Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations, Commun. Math. Sci. 14:1 (2016), 233–247.
  • [43] Jiawei Liu & Wen-An Yong, Stability analysis of the Biot/squirt models for wave propagation in saturated porous media, Geophysical Journal International 204 (2016), 535–543.
  • [44] Juntao Huang & Wen-An Yong & Liu Hong, Generalization of the Kullback-Leibler divergence in the Tsallis statistics, J. Math. Anal. Appl. 436 (2016), 501–512.
  • [45] Juntao Huang & Zexi Hu & Wen-An Yong, Second-order curved boundary treatments of the lattice Boltzmann method for convectiondiffusion equations, J. Comput. Phys. 310 (2016), 26–44.
  • [46] Michael Herty & Wen-An Yong, Feedback boundary control of linear hyperbolic systems with relaxation, Automatica 69 (2016), 12–17.
  • [47] Wen-An Yong & Weifeng Zhao & Li-Shi Luo, Theory of the lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration, Phys. Rev. E 93 (2016), 033310.
  • [48] Zexi Hu & Juntao Huang & Wen-An Yong, Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions,Phys. Rev. E 93 (2016), 043320.
  • [49] Xiaokai Huo & Wen-An Yong, Structural stability of a 1D compressible viscoelastic fluid model, J. Differ. Equations, 261:2 (2016), 1264–1284.
  • [50] Liu Hong & Chen Jia & Yi Zhu & Wen-An Yong, Novel dissipation properties of the master equation, J. Math. Phys. 57 (2016), 103303.
  • [51] Vincent Giovangigli & Wen-An Yong, Volume Viscosity and Internal Energy Relaxation: Symmetrization and Chapman-Enskog Expansion, Kinetic and Related Models, 8:1 (2015), 79–116.
  • [52] Zaibao Yang & Wen-An Yong, Validity of the Chapman-Enskog expansion for a class of hyperbolic relaxation systems, J. Differ. Equations 258:8 (2015), 2745–2766.
  • [53] Yi Zhu & Liu Hong & Zaibao Yang & Wen-An Yong, Conservationdissipation formalism of irreversible thermodynamics, J. Non-Equilib. Thermodyn. 40:2 (2015), 67–74.
  • [54] Yeping Li & Wen-An Yong, Quasi-neutral limit in a 3D compressible Navier-Stokes-Poisson-Korteweg model, IMA J. Appl. Math. 80:3(2015), 712–727.
  • [55] Juntao Huang & Hao Wu & Wen-An Yong, On initial conditions for the lattice Boltzmann method, Commun. Comput. Phys. 18:2(2015), 450–468.
  • [56] Liu Hong & Ya-Jing Huang & Wen-An Yong, A Kinetic Model for Cell Damage Caused by Oligomer Formation, Biophys. J. 109 (2015), 1338–1346.
  • [57] Juntao Huang & Wen-An Yong, Boundary conditions of the lattice Boltzmann method for convection-diffusion equations, J. Comput. Phys. 300 (2015), 70–91.
  • [58] Liu Hong & Zaibao Yang & Yi Zhu & Wen-An Yong, A novel construction of thermodynamically compatible models and its correspondence with Boltzmann-equation-based moment-closure hierarchies, J. Non-Equilib. Thermodyn. 40:4 (2015), 247–256.
  • [59] Yeping Li & Wen-An Yong, The zero Mach number limit of the three-dimensional compressible viscous magnetohydrodynamic equations, Chinese Ann. Math. B 36(6) (2015), 1043–1054.
  • [60] Yajing Huang & Liu Hong & Wen-An Yong, Partial equilibrium approximations in apoptosis. II. The Death-Inducing Signaling Complex Subsystem, Math. Biosci. 270 (2015), 126–134.
  • [61] Wen-An Yong, CFL condition, Boltzmann’s H-theorem, Onsager reciprocal relations and beyond, Math. Meth. Appl. Sci. 38:18 (2015), 4479–4486.
  • [62] Zaibao Yang, Wen-An Yong, Yi Zhu, A rigorous derivation of multicomponent diffusion laws(2015)
  • [63] Juntao Huang & Li Zhang & Wen-An Yong & Moran Wang, On complex boundary conditions of the lattice Boltzmann method for diffusion equations, Appl. Math. Mech. 35:3 (2014), 305–312 (in Chinese).
  • [64] Zaibao Yang & Wen-An Yong, Asymptotic analysis of the lattice Boltzmann method for generalized Newtonian fluid flows, Multiscale Model. Simul. 12:3 (2014), 1028–1045.
  • [65] Wen-An Yong, Newtonian limit of Maxwell fluid flows, Arch. Rational Mech. Anal. 214:3 (2014), 913–922.
  • [66] Liu Hong & Wen-An Yong, Simple moment-closure model for the self-assembling of breakable amyloid filaments, Biophys. J. 104 (2013), 533–540.
  • [67] Ya-Jing Huang & Wen-An Yong, Partial equilibrium approximations in apoptosis. I. The intracellular-signaling subsystem, Math. Biosci. 246 (2013), 27–37.
  • [68] Ya-Jing Huang & Wen-An Yong, A stable simplification of a Fassignaling pathway model for apoptosis, 2012 IEEE 6th International Conference on Systems Biology (ISB), 125–134.
  • [69] Hao Yan & Wen-An Yong, Stability of steady solutions to reactionhyperbolic systems for axonal transport, J. Hyper. Partial Differ. Eqns. 9:2 (2012), 325–337.
  • [70] Wen-An Yong, Conservation-dissipation structure of chemical reaction systems, Phys. Rev. E 86, 067101 (2012).
  • [71] Wen-An Yong & Li-Shi Luo, Accuracy of the viscous stress in the lattice Boltzmann equation with simple boundary conditions, Phys. Rev. E 86, 065701(R) (2012).
  • [72] Jiang Xu & Wen-An Yong, Zero-electron-mass Limit of Hydrodynamic Models for Plasmas, Proc. Roy. Soc. Edinburgh Sect. A 141:2(2011), 431–447.
  • [73] Jiang Xu & Wen-An Yong, A note on incompressible limit for compressible Euler equations, Math. Methods Appl. Sci. 34:7 (2011), 831–838.
  • [74] Hao Yan & Wen-An Yong, Weak entropy solutions of nonlinear reaction-hyperbolic systems for axonal transport, M3AS (Math. Models and Methods Appl. Sci.) 21:10 (2011), 2135–2154.
  • [75] Jiang Xu & Wen-An Yong, On the Relaxation-time Limits in the Bipolar Hydrodynamic Models for Semiconductors, In: Some Problems on Nonlinear Hyperbolic Equations and Applications, T. Li et al. (eds), World Scientific Publishing Company, 2010.
  • [76] Shuichi Kawashima & Wen-An Yong, Decay estimates for hyperbolic balance laws, ZAA (Zeitschrift f¨ur Analysis und ihre Anwendungen), 28 (2009), 1–33.
  • [77] Jiang Xu & Wen-An Yong, Relaxation-time Limits of Non-isentropic Hydrodynamic Models for Semiconductors, J. Differ. Equations, 247 (2009), 1777–1795.
  • [78] Jiang Xu & Wen-An Yong, Zero-relaxation Limit of Non-isentropic Hydrodynamic Models for Semiconductors, DCDS-A (Discrete and Continuous Dynamical Systems), 25:4 (2009), 1319–1332.
  • [79] Wen-An Yong, An Onsager-like relation for the lattice Boltzmann method, Computers & Mathematics with Applications, 58 (2009), 862–866.
  • [80] Michael Junk & Wen-An Yong, Weighted L2-stability of the lattice Boltzmann method, SIAM J. Numer. Anal., 47:3 (2009), 1651–1665.
  • [81] A. Dressel & Wen-An Yong, Traveling-wave solutions for hyperbolic systems of balance laws, In: Hyperbolic problems: theory, numerics, applications, S. Benzoni-Gavage et al. (eds), Springer, Berlin, 2008, 485–492.
  • [82] C. Rohde & N. Tiemann & Wen-An Yong, Weak and classical solutions for a model problem in radiation hydrodynamics, In: Hyperbolic problems: theory, numerics, applications, S. Benzoni-Gavage et al. (eds), Springer, Berlin, 2008, 891–899.
  • [83] Wen-An Yong, An interesting class of partial differential equations, J. Math. Phys. 49 (2008), 033503.
  • [84] Christian Rohde & Wen-An Yong, Dissipative entropy and global smooth solutions for radiation hydrodynamics and magnetohydrodynamics, M3AS (Mathematical Models and Methods in Applied Sciences), 18:12 (2008), 2151–2174.
  • [85] Christian Rohde & Wen-An Yong, The nonrelativistic limit in radiation hydrodynamics: I. weak entropy solutions for a model problem, J. Differ. Equations 234 (2007), 91–109.
  • [86] Yue-Jun Peng & Ya-Guang Wang & Wen-An Yong, Quasineutral limit of the nonisentropic Euler-Poisson system, Proc. R. Soc. Edinb. A 136A (5) (2006), 1013–1026.
  • [87] Alexander Dressel & Wen-An Yong, Existence of traveling wave solutions for hyperbolic systems of balance laws, Arch. Rational Mech. Anal. 182 (2006), 49–75.
  • [88] Wen-An Yong & Willi Jager, On hyperbolic relaxation problems, In: Analysis and Numerics for Conservation Laws, G. Warnecke (ed.), Springer, Berlin, 2005, 495–520.
  • [89] Wen-An Yong, A note on the zero Mach number limit of compressible Euler equations, Proc. Amer. Math. Soc. 133 (2005), 3079–3085.
  • [90] Yann Brenier & Wen-An Yong, Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism, J. Math. Phys. 46, 062305 (2005).
  • [91] Wen-An Yong & Li-Shi Luo, Nonexistence of H theorem for some lattice Boltzmann models, J. Stat. Phys. 121 (2005), 91–103.
  • [92] M. K. Banda & W.-A. Yong & A. Klar, A stability notion for lattice Boltzmann equations, SIAM J. Sci. Comput. 27 (2006), 2098–2111.
  • [93] Wen-An Yong, Entropy and global existence for hyperbolic balance laws, Arch. Rational Mech. Anal. 172 (2004), 247–266.
  • [94] Wen-An Yong, Diffusive relaxation limit of multidimensional isentropic hydrodynamical models for semiconductors, Siam J. Appl. Math. 64 (2004), 1737–1748.
  • [95] Shuichi Kawashima & Wen-An Yong, Dissipative structure and entropy for hyperbolic systems of balance laws, Arch. Rational Mech. Anal. 174 (2004), 345–364.
  • [96] M. K. Banda & W.-A. Yong & A. Klar, Stability structure for lattice Boltzmann equations: Some computational results, Proc. Appl. Math. Mech. 3 (2003), 72–75.
  • [97] Wen-An Yong & Li-Shi Luo, Nonexistence of H theorems for athermal lattice Boltzmann models with polynomial equilibria, Phys. Rev. E 67, 051105 (2003).
  • [98] Michael Junk & Wen-An Yong, Rigorous Navier-Stokes limit of the lattice Boltzmann equation, Asymptotic Anal. 35(2) (2003), 165–185.
  • [99] Wen-An Yong, Basic structures of hyperbolic relaxation systems, Proc. R. Soc. Edinb. 132A (2002), 1259–1274.
  • [100] Iuliu Sorin Pop & Wen-An Yong, A numerical approach to degenerate parabolic equations, Numer. Math. 92 (2002), 357–381.
  • [101] Wen-An Yong, Remarks on hyperbolic relaxation systems, In: Hyperbolic problems: theory, numerics, applications, Vols. I & II (Interna. Ser. Numer. Math. Vols. 140, 141 ), H. Freist¨uhler et al. (eds.), Birkh¨auser, Basel, 2001. 921–929.
  • [102] Wen-An Yong, Basic aspects of hyperbolic relaxation systems, in Advances in the Theory of Shock Waves, H. Freist¨uhler and A. Szepessy, eds., Progress in Nonlinear Differential Equations and Their Applications, Vol. 47, Birkh¨auser, Boston, 2001, 259–305.
  • [103] Corrado Lattanzio & Wen-An Yong, Hyperbolic-parabolic singular limits for first-order nonlinear systems, Commun. in Partial Differ. Equations 26 (5&6) (2001), 939–964.
  • [104] Hailiang Liu & Wen-An Yong, Time-asymptotic stability of boundarylayers for a hyperbolic relaxation system, Commun. in Partial Differ. Equations 26 (7&8) (2001), 1323–1343.
  • [105] Wen-An Yong & Kevin Zumbrun, Existence of relaxation shock profiles for hyperbolic conseration laws, Siam. J. Appl. Math. 60 (2000), 1565–1575.
  • [106] Iuliu Sorin Pop & Wen-An Yong, On the existence and uniqueness of a solution for an elliptic problem, Stud. Univ. Babes-Bolyai Math. 45 (2000), No. 4, 97–107.
  • [107] Wen-An Yong, Boundary conditions for hyperbolic systems with stiff source terms, Indiana Univ. Math. J. 48 (1999), 115-137.
  • [108] Wen-An Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differ. Equations 155 (1999), 89–132.
  • [109] Wen-An Yong, A simple approach to Glimm’s interaction estimates, Appl. Math. Lett. 12 (1999), 29-34.
  • [110] Wen-An Yong, A difference scheme for a stiff system of conservation laws, Proc. Roy. Soc. Edin. 128A (1998), 1403–1414.
  • [111] Wen-An Yong, Error analysis of difference methods for moving boundary problems of hyperbolic systems, Institut Mittag-Leffler (Stockholm), Report No. 6, 1997/98.
  • [112] Wen-An Yong, Existence and asymptotic stability of traveling wave solutions of a model system for reacting flow, Nonlinear Analysis: TMA, 26 (1996), 1791–1809
  • [113] Wen-An Yong, Numerical analysis of relaxation schemes for scalar conservation laws, IWR Preprint 95–30, Universit¨at Heidelberg, July 1995.
  • [114] Wen-An Yong, Singular perturbations of first-order hyperbolic systems, In: Nonlinear hyperbolic problems: theoretical, applied, and computational aspects (Notes Numer. Fluid Mech. Vol. 43), A. Donato et al. (eds.), Vieweg, Braunschweig, 1993, 597–604.
  • [115] Wen-An Yong, Explicit dissipative difference schemes for boundary problems of generalized Schr¨odinger systems, Acta Math. Appl. Sin. (English Ser.) 7 (1991), 173–186.
  • [116] Wen-An Yong & You-lan Zhu, Convergence of difference methods for nonlinear problems with moving boundaries, Sci. China (Series A) 33 (1990), 537–550.
  • [117] You-lan Zhu & Wen-An Yong, On stability and convergence of difference schemes for quasilinear hyperbolic initial-boundary-value problems, Lecture Notes in Mathematics, Vol. 1297, Springer, Berlin, 1987, 210–244.
  • [118] Wen-An Yong & You-lan Zhu, Stability of implicit difference schemes with space and time-dependent coefficients, J. Comp. Math. 5 (1987), 281–286.
  • [119] Zhang, Ruixi, Yihong Chen, Qian Huang, and Wen-An Yong, Dissipativeness of the hyperbolic quadrature method of moments for kinetic equations, arXiv:2406.13931 (2024)
  • [120] Chen, Yihong, Qian Huang, and Wen-An Yong, Discrete-Velocity-Direction Models of BGK-Type with Minimum Entropy: II—Weighted Models, Journal of Scientific Computing, 99(3), 84 (2024)
  • [121] Zhou, Yizhou, and Wen-An Yong, Boundary conditions for hyperbolic relaxation systems with characteristic boundaries, submitted to arXiv:2409.01916
  • [122] Yang, Haitian, and Wen-An Yong, Feedback boundary control of multi-dimensional hyperbolic systems with relaxation, Automatica(167), 111791

 

更新时间: 2025-05-20 15:34:26


北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060