北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 苏春梅

苏春梅

     助理教授    
助理教授 苏春梅

单位: 清华丘成桐数学科学中心, 北京雁栖湖应用数学研究院

团队: 偏微分方程理论与计算

邮箱: suchunmei@bimsa.cn

研究方向: 计算与应用数学

研究兴趣


  • 数值分析,科学计算
  • 多尺度方法和高振荡偏微分方程
  • 色散偏微分方程,时间积分器
  • 几何流的计算与分析
  • 计算与应用数学

教育经历


  • 2011 - 2015      北京大学      博士
  • 2008 - 2011      北京师范大学      硕士
  • 2004 - 2008      北京师范大学      学士

工作经历


  • 2025 -      BIMSA      助理研究员
  • 2021 -      清华大学丘成桐数学科学中心      Assistant Professor
  • 2018 - 2020      慕尼黑工业大学      Humboldt Postdoctoral Fellow
  • 2017 - 2018      因斯布鲁克大学      博士后
  • 2016 - 2017      新加坡国立大学      博士后
  • 2015 - 2016      北京计算科学研究中心      博士后

荣誉与奖项


  • 2019      Alexander von Humboldt Fellowship

出版物


  • [1] W Jiang, C Su, G Zhang, L Zhang, Predictor-corrector, BGN-based parametric finite element methods for surface diffusion, Journal of Computational Physics, 530, 113901 (2025)
  • [2] L Ji, H Li, A Ostermann, C Su, Filtered Lie-Trotter splitting for the “good” Boussinesq equation: Low regularity error estimates, Mathematics of Computation, 94(355), 2345-2365 (2025)
  • [3] H Garcke, W Jiang, C Su, G Zhang, Structure-Preserving Parametric Finite Element Method for Surface Diffusion Based on Lagrange Multiplier Approaches, SIAM Journal on Scientific Computing, 47(3), A1983-A2011 (2025)
  • [4] R Carles, C Su, Uniform-in-Time Error Estimates for Filtered Lie Splitting Method in NLS, Recent Progress on Numerical Analysis for Nonlinear Dispersive Equations … (2025)
  • [5] W Jiang, C Su, G Zhang, Convergence analysis of three semidiscrete numerical schemes for nonlocal geometric flows including perimeter terms, IMA Journal of Numerical Analysis (2025)
  • [6] H Li, C Su, Low-regularity integrators for the “good” Boussinesq equation with linearly decreasing additional derivative requirements, Mathematical Models and Methods in Applied Sciences, 1-37 (2025)
  • [7] R Carles, C Su, Recent Progress on Numerical Analysis for Nonlinear Dispersive Equations, WORLD SCIENTIFIC (2025)
  • [8] H Li, C Su, Low-regularity exponential-type integrators for the Zakharov system with rough data in all dimensions, Mathematics of Computation, 94(352), 727-762 (2025)
  • [9] L Ji, H Li, C Su, A filtered Lie splitting method for the Zakharov system with low regularity estimates, arXiv, 2503.10196 (2025)
  • [10] G Zhang, C Su, Uniform Error Bounds of a Conservative Compact Finite Difference Method for the Quantum Zakharov System in the Subsonic Limit Regime, Journal of Computational Mathematics, 42(1), 289-312 (2024)
  • [11] W Jiang, C Su, G Zhang, Stable backward differentiation formula time discretization of BGN-based parametric finite element methods for geometric flows, SIAM Journal on Scientific Computing, 46(5), A2874-A2898 (2024)
  • [12] W Jiang, C Su, G Zhang, A second-order in time, BGN-based parametric finite element method for geometric flows of curves, Journal of Computational Physics, 514, 113220 (2024)
  • [13] R Carles, C Su, Scattering and uniform in time error estimates for splitting method in NLS, Foundations of Computational Mathematics, 24(2), 683-722 (2024)
  • [14] H Li, C Su, A semi-discrete first-order low regularity exponential integrator for the “good” Boussinesq equation without loss of regularity, Journal of Scientific Computing, 95(3), 74 (2023)
  • [15] W Jiang, C Su, G Zhang, A convexity-preserving and perimeter-decreasing parametric finite element method for the area-preserving curve shortening flow, SIAM Journal on Numerical Analysis, 61(4), 1989-2010 (2023)
  • [16] H Li, C Su, Low regularity exponential-type integrators for the “good” Boussinesq equation, IMA Journal of Numerical Analysis, 43(6), 3656-3684 (2023)
  • [17] C Lasser, C Su, Various variational approximations of quantum dynamics, Journal of Mathematical Physics, 63(7) (2022)
  • [18] W Bao, R Carles, C Su, Q Tang, Error estimates of local energy regularization for the logarithmic Schrödinger equation, Mathematical Models and Methods in Applied Sciences, 32(01), 101-136 (2022)
  • [19] W Bao, Y Feng, C Su, Uniform error bounds of time-splitting spectral methods for the long-time dynamics of the nonlinear Klein–Gordon equation with weak nonlinearity, Mathematics of Computation, 91(334), 811-842 (2022)
  • [20] R Carles, C Su, Numerical study of the logarithmic Schrodinger equation with repulsive harmonic potential, arXiv, 2202.09599 (2022)
  • [21] R Carles, C Su, Nonuniqueness and nonlinear instability of Gaussons under repulsive harmonic potential, Communications in Partial Differential Equations, 47(6), 1176-1192 (2022)
  • [22] C Su, X Zhao, A uniformly first-order accurate method for Klein-Gordon-Zakharov system in simultaneous high-plasma-frequency and subsonic limit regime, Journal of Computational Physics, 428, 110064 (2021)
  • [23] C Su, GM Muslu, An exponential integrator sine pseudospectral method for the generalized improved Boussinesq equation, BIT Numerical Mathematics, 61(4), 1397-1419 (2021)
  • [24] G Zhang, C Su, A conservative linearly-implicit compact difference scheme for the quantum Zakharov system, Journal of Scientific Computing, 87(3), 71 (2021)
  • [25] C Su, W Yao, A Deuflhard-type exponential integrator Fourier pseudo-spectral method for the “good” Boussinesq equation, Journal of Scientific Computing, 83(1), 4 (2020)
  • [26] C Su, X Zhao, On time-splitting methods for nonlinear Schrödinger equation with highly oscillatory potential, ESAIM: Mathematical Modelling and Numerical Analysis, 54(5), 1491-1508 (2020)
  • [27] A Ostermann, C Su, A Lawson-type exponential integrator for the Korteweg–de Vries equation, IMA Journal of Numerical Analysis, 40(4), 2399-2414 (2020)
  • [28] W Bao, R Carles, C Su, Q Tang, Regularized numerical methods for the logarithmic Schrödinger equation, Numerische Mathematik, 143(2), 461-487 (2019)
  • [29] W Yi, X Ruan, C Su, Optimal resolution methods for the Klein–Gordon–Dirac system in the nonrelativistic limit regime, Journal of Scientific Computing, 79(3), 1907-1935 (2019)
  • [30] A Ostermann, C Su, Two exponential-type integrators for the “good” Boussinesq equation, Numerische Mathematik, 143(3), 683-712 (2019)
  • [31] W Bao, R Carles, C Su, Q Tang, Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation, SIAM Journal on Numerical Analysis, 57(2), 657-680 (2019)
  • [32] C Su, Z Li, A meshing strategy for a quadratic iso-parametric FEM in cavitation computation in nonlinear elasticity, Journal of Computational and Applied Mathematics, 330, 630-647 (2018)
  • [33] C Su, Comparison of numerical methods for the Zakharov system in the subsonic limit regime, Journal of Computational and Applied Mathematics, 330, 441-455 (2018)
  • [34] C Su, W Yi, Error estimates of a finite difference method for the Klein–Gordon–Zakharov system in the subsonic limit regime, IMA Journal of Numerical Analysis, 38(4), 2055-2073 (2018)
  • [35] Y Ma, C Su, A uniformly and optimally accurate multiscale time integrator method for the Klein–Gordon–Zakharov system in the subsonic limit regime, Computers & Mathematics with Applications, 76(3), 602-619 (2018)
  • [36] W Bao, C Su, UNIFORM ERROR ESTIMATES OF A FINITE DIFFERENCE METHOD FOR THE KLEIN-GORDON-SCHRÖDINGER SYSTEM IN THE NONRELATIVISTIC AND MASSLESS LIMIT REGIMES., Kinetic & Related Models, 11(4) (2018)
  • [37] W Bao, C Su, A uniformly and optimally accurate method for the Zakharov system in the subsonic limit regime, SIAM Journal on Scientific Computing, 40(2), A929-A953 (2018)
  • [38] W Bao, C Su, Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, Mathematics of Computation, 87(313), 2133-2158 (2018)
  • [39] CM Su, ZP Li, Orientation-preservation conditions on an iso-parametric FEM in cavitation computation, Science China Mathematics, 60(4), 719-734 (2017)
  • [40] W Bao, C Su, Uniform error bounds of a finite difference method for the Zakharov system in the subsonic limit regime via an asymptotic consistent formulation, Multiscale Modeling & Simulation, 15(2), 977-1002 (2017)
  • [41] C Su, Z Li, Error analysis of a dual-parametric bi-quadratic FEM in cavitation computation in elasticity, SIAM Journal on Numerical Analysis, 53(3), 1629-1649 (2015)
  • [42] R Carles, Y Feng, Y Ma, Q Tang, B Lin, C Wang, C Su, Y Wu, Collaborators (1970)

 

更新时间: 2025-12-07 13:00:10


北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060