王雅晴
副研究员团队: 人工智能和机器学习
办公室: A13-105
邮箱: wangyaqing@bimsa.cn
研究方向: 机器学习
个人主页: https://wangyaqing.github.io/
个人简介
王雅晴博士现为北京雁栖湖应用数学研究院副研究员,2019年于香港科技大学计算机科学及工程学系取得博士学位,师从倪明选教授和郭天佑教授,研究方向为机器学习。2019至2024年,她在百度研究院担任资深研究员,专注于标注样本稀缺的冷启动推荐、检索意图识别、大模型和智能体(Agent)优化以及AI4Science等领域的研究工作。王雅晴博士的研究方向涵盖机器学习与人工智能,重点围绕简约学习,聚焦小样本学习、稀疏学习、低秩学习等,以高效低成本的方式解决生物医药、推荐系统和自然语言处理中的实际问题。她已在国际顶级会议与期刊如NeurIPS、ICML、TPAMI、JMLR、TIP上发表了24篇论文(其中18篇为第一作者或通讯作者,15篇为CCF A类会议和期刊论文),其论文引用次数已超过3700次。王雅晴博士撰写的小样本学习综述被列为ACM Computing Surveys最近五年中最高引用论文,并成为ESI热点论文(前0.1%)。此外,作为项目骨干,她承担了科技部科技创新2030重大项目和国家自然科学基金面上项目。她研发的小样本学习工具包在GitHub上获得了超过1700次的关注。她长期担任IJCAI和AAAI的高级程序委员,并为ICML、NeurIPS、ICLR、TPAMI等顶级会议与期刊审稿。在2024年,王雅晴博士入选全球前2%顶尖科学家榜单。
研究兴趣
- 小样本学习和元学习
- 图学习
- 药物发现和生物信息学
- 推荐系统
- 大模型和智能体
教育经历
- 2010 - 2014 山东大学 计算机科学与技术 工学学士
- 2014 - 2019 香港科技大学 计算机科学及工程学系 哲学博士 (Supervisor: 倪明选教授,郭天佑教授)
工作经历
- 2024 - 北京雁栖湖应用数学研究院 副研究员
- 2019 - 2024 百度研究院 资深研究员
出版物
- [1] Quanming Yao, Yongqi Zhang, Yaqing Wang, Nan Yin, James Kwok, Qiang Yang, Knowledge-Aware Parsimony Learning: A Perspective from Relational Graphs, accepted by AI Magazine (2024)
- [2] Yaqing Wang, Hongming Piao, Daxiang Dong, Quanming Yao, and Jingbo Zhou, Warming Up Cold-Start CTR Prediction by Learning Item-Specific Feature Interactions, ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2024)
- [3] Shiguang Wu, Yaqing Wang, and Quanming Yao, PACIA: Parameter-Efficient Adapter for Few-Shot Molecular Property Prediction, International Joint Conference on Artificial Intelligence (IJCAI) (2024)
- [4] Yongpan Zou,Yunshu Wang, Haozhi Dong, Yaqing Wang, Yanbo He, and Kaishun Wu, PreGes-Net: Few-shot Acoustic Gesture Recognition Based on Task-adaptive Pretrained Networks, IEEE Transactions on Mobile Computing (2024)
- [5] Yaqing Wang, Zaifei Yang, and Quanming Yao, Accurate and Interpretable Drug-drug Interaction Prediction Enabled by Knowledge Subgraph Learning, Communications Medicine (Commun. Med.,Nature Portfolio), 4(1), 59 (2024)
- [6] Quanming Yao, Zhenqian Shen, Yaqing Wang†, and Dejing Dou, Property-Aware Relation Networks for Few-Shot Molecular Property Prediction, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 46(8), 5413-5429 (2024)
- [7] Yan Wen, Chen Gao, Lingling Yi, Liwei Qiu, Yaqing Wang, and Yong Li, Efficient and Joint Hyperparameter and Architecture Search for Collaborative Filtering, ACMSIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2023)
- [8] Jiang Bian, Jizhou Huang, Shilei Ji, Yuan Liao, Xuhong Li, Qingzhong Wang, Jingbo Zhou, Yaqing Wang, Dejing Dou, and Haoyi Xiong, Feynman: Federated Advertising for Ecosystems-Oriented Mobile Apps Recommendation, IEEE Transactions on Service Computing (TSC), 16(5), 3361-3372 (2023)
- [9] Zhen Wang, Hongyi Nie, Wei Zheng, Yaqing Wang, and Xuelong Li, A Novel Tensor Learning Model for Joint Relational Triplet Extraction, IEEE Transactions on Cybernetics (TCYB), 54(4), 2483-2494 (2023)
- [10] Shiguang Wu, Yaqing Wang, Qinghe Jing, Daxiang Dong, Dejing Dou, and Quanming Yao, ColdNAS: Search to Modulate for User Cold-Start Recommendation, The Web Conference (TheWebConf/WWW) (2023)
- [11] Xuhong Li, Haoyi Xiong, Yi Liu, Dingfu Zhou, Zeyu Chen, Yaqing Wang, and Dejing Dou, Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training of Image Segmentation Models, Machine Learning (MLJ), 112(6), 2193-2209 (2023)
- [12] Quanming Yao, Yaqing Wang, Bo Han, and James T. Kwok, Efficient Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm Regularization, Journal of Machine Learning Research (JMLR), 23(136), 1-60 (2022)
- [13] Kexin Zheng, Yaqing Wang, Quanming Yao, and Dejing Dou, Simplified Graph Learning for Inductive Short Text Classification, Conference on Empirical Methods in Natural Language Processing (EMNLP) (2022)
- [14] Haoran Liu, Haoyi Xiong, Yaqing Wang, Haozhe An, Dongrui Wu, and Dejing Dou, Exploring the Common Principal Subspace of Deep Features in Neural Networks, Machine Learning (MLJ), 111(3), 1125-1157 (2022)
- [15] Yaqing Wang, Song Wang, Yanyan Li, and Dejing Dou, Recognizing Medical Search Query Intent by Few-shot Learning, International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) (2022)
- [16] Yaqing Wang, Xin Tian, Haoyi Xiong, Yueyang Li, Zeyu Chen, Sheng Guo, and Dejing Dou, RGL: A Simple yet Effective Relation Graph Augmented Prompt-based Tuning Approach for Few-Shot Learning, Findings of the ACL: NAACL (NAACL Findings) (2022)
- [17] Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou, Generative Time Series Forecasting with Diffusion, Denoise and Disentanglement, Neural Information Processing Systems (NeurIPS) (2022)
- [18] Yaqing Wang, Abulikemu Abuduweili, Quanming Yao, and Dejing Dou, Property-Aware Relation Networks for Few-Shot Molecular Property Prediction (Spotlight), Neural Information Processing Systems (NeurIPS) (2021)
- [19] Yaqing Wang, Song Wang, Quanming Yao, and Dejing Dou, Hierarchical Heterogeneous Graph Representation Learning for Short Text Classification, Conference on Empirical Methods in Natural Language Processing (EMNLP) (2021)
- [20] Yaqing Wang, Quanming Yao, and James T. Kwok, A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix Learning, The Web Conference (TheWebConf / WWW) (2021)
- [21] Yaqing Wang, James T. Kwok, and Lionel M. Ni, Generalized Convolutional Sparse Coding with UnknownNoise, IEEE Transactionson Image Processing (TIP), 29(3), 5386-5395 (2018)
- [22] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni, Generalizing from a Few Examples: A Survey on Few-Shot Learning, ACM Computing Surveys (CSUR), 53(3), 1-34 (2018)
- [23] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni, Online convolutional sparse coding with sample-dependent dictionary, International Conference on Machine Learning (ICML) (2018)
- [24] Yaqing Wang, Quanming Yao, James T.Kwok, and Lionel M. Ni, Scalable Online Convolutional Sparse Coding, IEEE Transactions on Image Processing (TIP), 27(10), 4850-4859 (2018)
- [25] Yaqing Wang, James T. Kwok, Quanming Yao, and Lionel M. Ni, Zero-shot learning with a partial set of observed attributes, International Joint Conference on Neural Networks (IJCNN) (2017)
更新时间: 2024-12-03 12:17:10