Schubert calculus and bosonic operators

Gleb Nenashev

St Petersburg State University

Beijing, July 9, 2024

We denote by \mathbb{Y} the set of Young diagrams (partitions), i.e., $\lambda = (\lambda_1, \dots, \lambda_k) \in \mathbb{Y}$ s.t. $\lambda_1 \geq \dots \geq \lambda_k \geq 0$, $\lambda_i \in \mathbb{Z}_{\geq 0}$. For example,

We denote by $\mathbb Y$ the set of Young diagrams (partitions), i.e., $\lambda=(\lambda_1,\ldots,\lambda_k)\in\mathbb Y$ s.t. $\lambda_1\geq\ldots\geq\lambda_k\geq 0,\ \lambda_i\in\mathbb Z_{\geq 0}$. For example,

Define the vector space $\mathbb{Q}\mathbb{Y}$ as formal finite sums of Young diagrams with rational coefficients, i.e.,

$$\mathbb{QY} := \left\{ \sum_{i=1}^k a_i \lambda^{(i)}: \ k \in \mathbb{N}, \ a_i \in \mathbb{Q}, \ \lambda^{(i)} \in \mathbb{Y} \right\}.$$

Operators for Young diagrams

S. V. Kerov defined the following two operators

$$U_{z}\lambda := \sum_{\substack{(i,j) \in \mathbb{N}^2 \\ \mu = \lambda \cup (i,j) \in \mathbb{Y}}} (z + (j-i)) \cdot \mu$$

and

$$D_{z'}\lambda := \sum_{\substack{(i,j) \in \mathbb{N}^2 \\ \mu = \lambda \setminus (i,j) \in \mathbb{Y}}} (z' + (j-i)) \cdot \mu.$$

The number j-i (column index minus row index) is the content of the box $\mu \setminus \lambda$ and $\lambda \setminus \mu$ resp.

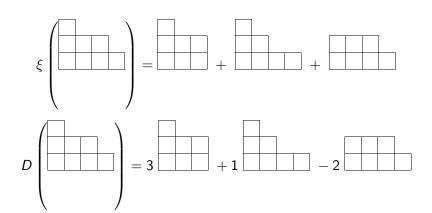
See A. Okounkov, "SL(2) and z-measures."

Define two linear "differential" operators on \mathbb{QY} . For a Young diagram $\lambda \in \mathbb{Y}$, we have

$$\xi(\lambda) := D_{z'+1}(\lambda) - D_{z'}(\lambda) = \sum_{\substack{(i,j) \in \mathbb{N}^2 \\ \mu = \lambda \setminus (i,j) \in \mathbb{Y}}} \mu_i$$

and

$$D(\lambda) := D_0(\lambda) = \sum_{\substack{(i,j) \in \mathbb{N}^2 \\ \mu = \lambda \setminus (i,j) \in \mathbb{Y}}} (j-i) \cdot \mu.$$



Key Lemma

For the empty diagram, we have $\xi(\emptyset) = D(\emptyset) = 0$, therefore we associate the empty diagram with $\emptyset = 1$. We say that q times the empty diagram is a constant.

Lemma (N.)

An element from $\mathbb{Q}\mathbb{Y}$ is a constant if and only if both operators give zero, i.e.,

$$x \in \mathbb{Q} \iff \xi(x) = D(x) = 0.$$

◆ロト ◆個ト ◆差ト ◆差ト を めへで

We say that a bilinear map $\star: \mathbb{QY}^2 \to \mathbb{QY}$ is graded if

• for $\lambda, \mu \in \mathbb{Y}$, $\lambda \star \mu \in \mathbb{QY}_{|\lambda|+|\mu|}$.

Corollary

There is at most one bilinear graded map \star such that, for any $\lambda, \mu \in \mathbb{Y}$,

- $1 \star 1 = 1$, where 1 is the empty diagram;
- $\xi(\lambda \star \mu) = (\xi \lambda) \star \mu + \lambda \star (\xi \mu);$
- $D(\lambda \star \mu) = (D\lambda) \star \mu + \lambda \star (D\mu)$.

Furthermore if there is such \star , then it satisfies commutative and associative properties.

Main theorem

Theorem (N.)

There is a unique bilinear graded map \star such that, for any $\lambda, \mu \in \mathbb{Y}$,

- $1 \star 1 = 1$, where 1 is the empty diagram;
- $\xi(\lambda \star \mu) = (\xi \lambda) \star \mu + \lambda \star (\xi \mu);$
- $D(\lambda \star \mu) = (D\lambda) \star \mu + \lambda \star (D\mu)$.

Furthermore it is given by

$$\lambda \star \mu = \sum_{\nu} c_{\lambda,\mu}^{\nu} \nu,$$

where $c_{\lambda,\mu}^{\nu}$ are Littlewood-Richardson coefficients, i.e., \star is the multiplication for Schur functions.

4 D > 4 D > 4 E > 4 E > E > 90 P

Jacobi-Trudi identity

$$h_\ell := \underbrace{\qquad \qquad \qquad }_\ell$$

Theorem (Jacobi-Trudi identity)

For a partition
$$\lambda = (\lambda_1 \ge ... \ge \lambda_k \ge 0)$$
, we have

$$s_{\lambda} = \det \begin{bmatrix} h_{\lambda_1} & h_{\lambda_1+1} & h_{\lambda_1+2} & \dots & h_{\lambda_1+k-1} \\ h_{\lambda_2-1} & h_{\lambda_2} & h_{\lambda_2+1} & \dots & h_{\lambda_2+k-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_{\lambda_k-k+1} & h_{\lambda_k-k+2} & h_{\lambda_k-k+3} & \dots & h_{\lambda_k} \end{bmatrix}$$

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

Proof

$$s_{\lambda} \stackrel{?}{=} \mathsf{det}_{\lambda} := \mathsf{det} \begin{bmatrix} h_{\lambda_1} & h_{\lambda_1+1} & h_{\lambda_1+2} & \dots & h_{\lambda_1+k-1} \\ h_{\lambda_2-1} & h_{\lambda_2} & h_{\lambda_2+1} & \dots & h_{\lambda_2+k-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_{\lambda_k-k+1} & h_{\lambda_k-k+2} & h_{\lambda_k-k+3} & \dots & h_{\lambda_k} \end{bmatrix}$$

We prove it by induction by $|\lambda| = \lambda_1 + \ldots + \lambda_k$.

Base case: $|\lambda|=0$. We have $\lambda_1=\lambda_2=\ldots=\lambda_k=0$, therefore $s_{\lambda} = 1 = det_{\lambda}$.

Induction step: If $\xi(s_{\lambda}) = \xi(det_{\lambda})$ and $D(s_{\lambda}) = D(det_{\lambda})$, then by Key Lemma $s_{\lambda} = det_{\lambda}$.

Proof. Induction step: $\xi(s_{\lambda}) \stackrel{?}{=} \xi(det_{\lambda})$

$$s_{\lambda} \stackrel{?}{=} \operatorname{det}_{\lambda} := \operatorname{det} \left[egin{array}{ccccc} h_{\lambda_1} & h_{\lambda_1+1} & h_{\lambda_1+2} & \dots & h_{\lambda_1+k-1} \ h_{\lambda_2-1} & h_{\lambda_2} & h_{\lambda_2+1} & \dots & h_{\lambda_2+k-2} \ dots & dots & dots & dots & dots \ h_{\lambda_k-k+1} & h_{\lambda_k-k+2} & h_{\lambda_k-k+3} & \dots & h_{\lambda_k} \ \end{array}
ight]$$

We have

$$\xi(h_{\lambda_i-i+j})=h_{(\lambda_i-1)-i+j},$$

then after combining by rows we get

$$\xi(\mathsf{det}_\lambda) = \sum_{\lambda' = \lambda \setminus (i,\lambda_i) \in \mathbb{Y}} \mathsf{det}_{\lambda'} = \sum_{\lambda' = \lambda \setminus (i,j) \in \mathbb{Y}} s_{\lambda'} = \xi(s_\lambda).$$

Proof. Induction step: $D(s_{\lambda}) \stackrel{?}{=} D(det_{\lambda})$

$$s_{\lambda} \stackrel{?}{=} \operatorname{det}_{\lambda} := \operatorname{det} \begin{bmatrix} h_{\lambda_{1}} & h_{\lambda_{1}+1} & h_{\lambda_{1}+2} & \dots & h_{\lambda_{1}+k-1} \\ h_{\lambda_{2}-1} & h_{\lambda_{2}} & h_{\lambda_{2}+1} & \dots & h_{\lambda_{w}+k-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_{\lambda_{k}-k+1} & h_{\lambda_{k}-k+2} & h_{\lambda_{k}-k+3} & \dots & h_{\lambda_{k}} \end{bmatrix}$$

We have

$$D(h_{\lambda_{i}-i+j}) = (\lambda_{i}-i+j-1)h_{\lambda_{i}-i+j-1} =$$

= $(\lambda_{i}-i)h_{(\lambda_{i}-1)-i+j} + (j-1)h_{\lambda_{i}-i+(j-1)},$

then

$$D(\mathsf{det}_{\lambda}) = \sum_{\lambda' = \lambda \setminus (i, \lambda_i) \in \mathbb{Y}} (\lambda_i - i) \mathsf{det}_{\lambda'} = \sum_{\lambda' = \lambda \setminus (i, j) \in \mathbb{Y}} (j - i) s_{\lambda'} = D(s_{\lambda}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り<0</p>

For the polynomial ring $\mathbb{Q}[x_1, x_2, x_3, \ldots]$, the *i*-th divided differences operator is given by

$$\partial_i f := \frac{f - s_i f}{x_i - x_{i+1}}.$$

Definition (Lascoux–Schützenberger)/ Theorem (Demazure and Bernstein–Gelfand–Gelfand)

For a permutation $w_0 = (n, n-1, \dots, 1) \in S_n$, we define its Schubert polynomial as

$$\mathfrak{S}_{w_0} = x_1^{n-1} x_2^{n-2} \cdots x_{n-1}^1 \in \mathbb{Q}[x_1, x_2, \ldots].$$

For a permutation $w \in S_n$,

$$\partial_i \mathfrak{S}_w = \begin{cases} \mathfrak{S}_{ws_i} & \text{if } i \text{ is a } \textit{descent } \text{of } w, \text{ i.e., } \ell(ws_i) = \ell(w) - 1 \\ 0 & \text{if } i \text{ is an } \textit{ascent } \text{of } w, \text{ i.e., } \ell(ws_i) = \ell(w) + 1. \end{cases}$$

Theorem (Lascoux–Schützenberger)

For any $u \in S_{\mathbb{N}}$, its Schubert polynomial \mathfrak{S}_u is well defined and \mathfrak{S}_u is a homogeneous polynomial of degree $\ell(u)$.

The set $\{\mathfrak{S}_u, u \in S_{\mathbb{N}}\}$ of all Schubert Polynomials forms a linear basis of $\mathbb{Q}[x_1, x_2, x_3, \ldots]$.

Therefore, we have unique coefficients $c_{u,v}^w, (u,v,w\in S_{\mathbb{N}})$ such that, for any $u,v\in S_{\mathbb{N}}$,

$$\mathfrak{S}_{u}\mathfrak{S}_{v}=\sum_{w\in\mathcal{S}_{\mathbb{N}}}c_{u,v}^{w}\mathfrak{S}_{w}.$$

Problem

Give a combinatorial interpretation of $c_{u,v}^w$

Monk's rule (Monk)

For $u \in S_{\mathbb{N}}$ and $m \in \mathbb{N}$, we have

$$\mathfrak{S}_u\mathfrak{S}_{s_m} = \mathfrak{S}_u \cdot (x_1 + x_2 + \ldots + x_m) = \sum_{a \leq m < b: \ \ell(ut_{a,b}) = \ell(u) + 1} \mathfrak{S}_{ut_{a,b}}.$$

where $t_{a,b}$ is a transposition of a and b.

Let $[a, b], a < b \in \mathbb{N}$ be

$$\mathfrak{S}_u[a,b] = \begin{cases} \mathfrak{S}_{ut_{a,b}} & \text{if } \ell(ut_{a,b}) = \ell(u) + 1 \\ 0 & \text{otherwise.} \end{cases}$$

Pieri's rule (Sottile)

For $u \in S_{\mathbb{N}}$ and $k, m \in \mathbb{N}$, we have

$$\mathfrak{S}_{u} \cdot h_{k}(x_{1}, x_{2}, \dots, x_{m}) = \mathfrak{S}_{u} \cdot \left(\sum_{\substack{i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq m \\ a_{1} \leq \dots \leq a_{k} \leq m \\ m < b_{1}, \dots, b_{k} \text{ are distinct}}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \right) =$$

$$= \sum_{\substack{a_{1} \leq \dots \leq a_{k} \leq m \\ m < b_{1}, \dots, b_{k} \text{ are distinct}}} \mathfrak{S}_{u}[a_{1}b_{1}][a_{2}b_{2}] \cdots [a_{k}b_{k}]$$

and

$$\mathfrak{S}_{u} \cdot e_{k}(x_{1}, x_{2}, \dots, x_{m}) = \mathfrak{S}_{u} \cdot \left(\sum_{\substack{i_{1} < i_{2} < \dots < i_{k} \leq m \\ a_{1}, \dots, a_{k} \leq m \text{ are distinct} \\ m < b_{1} \leq \dots \leq b_{k}}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \right) =$$

Operator D for Schubert polynomials

Let

$$D = \sum_{i \in \mathbb{N}} \frac{\partial}{\partial x_i}$$

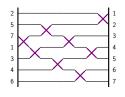
be the sum of all partial derivatives. Hence, we have *Leibniz product rule* for *D*:

$$D(\mathfrak{S}_u\mathfrak{S}_v)=(D\mathfrak{S}_u)\mathfrak{S}_v+\mathfrak{S}_u(D\mathfrak{S}_v).$$

Theorem (Hamaker-Pechenik-Speyer-Weigandt)

For any $u \in S_{\mathbb{N}}$,

$$D\mathfrak{S}_{u} = \sum_{k \in \mathbb{N}: \ \ell(s_{k}u):=\ell(u)-1} k\mathfrak{S}_{s_{k}u}.$$



Theorem

For a Grassmannian permutation $w \in S_{\mathbb{N}}$ of a descent m, we have

$$\mathfrak{S}_w = s_{\lambda(w)}(x_1, x_2, \dots, x_m),$$

where
$$\lambda(w) = (w_m - m, w_{m-1} - m + 1, w_{m-2} - m + 2, ...)$$
.

Theorem

For a Grassmannian permutation $w \in S_{\mathbb{N}}$ of a descent m, we have

$$D\mathfrak{S}_w = D_m s_{\lambda(w)}(x_1, x_2, \dots, x_m).$$

Stabilities

Let τ be a shift defined by

$$\tau w(i) = w(i-1) + 1, i \in \mathbb{Z} \quad \text{ for } w \in S_{\mathbb{Z}}.$$

For $w \in S_{\mathbb{N}}$, its *Stanley symmetric function* for $w \in S_{\mathbb{N}}$ is given by

$$\mathcal{F}_w(x_1,x_2,\ldots):=\lim_{k\to+\infty}\mathfrak{S}_{\tau^k w}(x_1,x_2,\ldots)\in\Lambda_+.$$

For $w \in S_{\mathbb{Z}}$, its back-stable Schubert polynomial is given by

$$\overleftarrow{\mathfrak{S}}_w(x_i, i \in \mathbb{Z}) := \lim_{k \to +\infty} \mathfrak{S}_{\tau^k w}(x_{1-k}, x_{2-k}, \ldots) \in \Lambda_- \otimes \mathbb{Q}[x_i, i \in \mathbb{Z}].$$

Theorem (Edelman-Greene)

For any $w \in S_{\mathbb{N}}$,

$$\mathcal{F}_w(x_1,x_2,\ldots)=\sum_{\lambda}a_{\lambda,w}s_{\lambda}(x_1,x_2,\ldots),$$

where $a_{\lambda,w} \in \mathbb{Z}_{\geq 0}$ is the number of increasing Young tableux of the shape λ , whose reads are reduced words of w^{-1} .

$$s_3 s_2 s_4 s_5 s_1 s_3 s_4 s_6 = (2, 5, 7, 1, 3, 4, 6)^{-1}$$

See Lam-Lee-Shimozono for another interpretation of $a_{\lambda,w}$.

Theorem (Lam-Lee-Shimozono)

The set $\{\overleftarrow{\mathfrak{S}}_u, u \in S_{\mathbb{Z}}\}$ is a linear basis of the ring $\mathbb{B} := \Lambda_- \otimes \mathbb{Q}[x_i, i \in \mathbb{Z}]$.

Therefore, for any $u, v \in S_{\mathbb{Z}}$,

$$\overleftarrow{\mathfrak{S}}_{u}\overleftarrow{\mathfrak{S}}_{v}=\sum_{w\in S_{\mathbb{Z}}}c_{u,v}^{w}\overleftarrow{\mathfrak{S}}_{w}.$$

For any $u, v, w \in S_{\mathbb{Z}}$, we have

$$c_{u,v}^{w} = c_{\tau u,\tau v}^{\tau w} = c_{\hat{u},\hat{v}}^{\hat{w}}, \text{ where } \hat{u}(i) = -u(-i).$$

Furthermore, for any $u, v, w \in S_{\mathbb{N}}$, $c_{u,v}^w$ is equal to the corresponding structure constant for Schubert polynomials.

Operators ξ and D on $\overleftarrow{\mathfrak{S}}$

$$\begin{split} \xi \overleftarrow{\mathfrak{S}}_u &:= \sum_{k \in \mathbb{Z}: \ \ell(s_k u) = \ell(u) - 1} \overleftarrow{\mathfrak{S}}_{s_k u}; \\ D \overleftarrow{\mathfrak{S}}_u &:= \sum_{k \in \mathbb{Z}: \ \ell(s_k u) = \ell(u) - 1} k \overleftarrow{\mathfrak{S}}_{s_k u}. \end{split}$$

Proposition (N.)

For any $u, v \in S_{\mathbb{Z}}$, we have:

$$\xi(\overleftarrow{\mathfrak{G}}_{u}\overleftarrow{\mathfrak{G}}_{v}) = (\xi\overleftarrow{\mathfrak{G}}_{u})\overleftarrow{\mathfrak{G}}_{v} + \overleftarrow{\mathfrak{G}}_{u}(\xi\overleftarrow{\mathfrak{G}}_{v});$$
$$D(\overleftarrow{\mathfrak{G}}_{u}\overleftarrow{\mathfrak{G}}_{v}) = (D\overleftarrow{\mathfrak{G}}_{u})\overleftarrow{\mathfrak{G}}_{v} + \overleftarrow{\mathfrak{G}}_{u}(D\overleftarrow{\mathfrak{G}}_{v}).$$

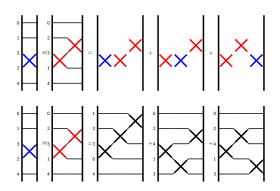
Corollary

Given a pair of permutations $u, v \in S_{\mathbb{Z}}$, the following holds:

$$\binom{\ell(u) + \ell(v)}{\ell(v)} |\mathcal{R}(u)| |\mathcal{R}(v)| = \sum_{w \in S_{\mathbb{Z}}} c_{u,v}^{w} |\mathcal{R}(w)|,$$

where $\mathcal{R}(u)$ is the set of reduced words of u.

Example



$$\overleftarrow{\mathfrak{S}}_{(01324)} \overleftarrow{\mathfrak{S}}_{(02314)} = \overleftarrow{\mathfrak{S}}_{(12304)} + \overleftarrow{\mathfrak{S}}_{(02413)} \qquad \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot 1 \cdot 1 = 1 + 2$$

$$\mathfrak{S}_{(1324)} \mathfrak{S}_{(2314)} = \mathfrak{S}_{(2413)} \qquad \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot 1 \cdot 1 \neq 2$$

Theorem (N.)

Given an operator η satisfying Leibniz product rule such that

$$\eta \overleftarrow{\mathfrak{S}}_u \in \mathit{span}\{ \overleftarrow{\mathfrak{S}}_{\mathit{s}_k u}: \ \ell(\mathit{s}_k u) = \ell(u) - 1\}.$$

Then η is a linera combination of ξ and D.

Criterion (postive)

Theorem A (N.)

There is a unique graded bilinear map \star such that, for any $u,v\in S_{\mathbb{Z}}$,

- $id \star id = id$;
- $\xi(u \star v) = (\xi u) \star v + u \star (\xi v);$
- $D(u \star v) = (Du) \star v + u \star (Dv);$
- $u \star v \in \mathbb{Z}_{\geq 0} S_{\mathbb{Z}}$.

Furthermore it is given by

$$u\star v=\sum_{w}c_{u,v}^{w}w,$$

where $c_{u,v}^w$ are structure constants for back-stable Schubert polynomials.

Criterion (supp; weak)

Let $S_{\mathbb{Z},k}$ be the set of permutations s.t. that have s_k in reduced words. Consider any function $f: S_{\mathbb{Z}}^2 \to \mathbb{Z}$ such that, for any $(u,v) \neq (id,id)$, either u or v or both have $s_{f(u,v)}$ in reduced words.

Theorem B (N.)

There is a unique graded bilinear map \star such that, for any $u, v \in S_{\mathbb{Z}}$,

- $id \star id = id$;
- $\xi(u \star v) = (\xi u) \star v + u \star (\xi v);$
- $D(u \star v) = (Du) \star v + u \star (Dv);$
- $u \star v \in \mathbb{Q}S_{\mathbb{Z},f(u,v)}$.

Furthermore it is given by

$$u\star v=\sum_{w}c_{u,v}^{w}w,$$

where $c_{\mu\nu}^{w}$ are structure constants for back-stable Schubert polynomials.

Proof of the Monk's rule

 $D = \sum_k k d_k$ and $\mathcal{M}_z = \sum_{a \leq z < b} [a, b]$. We know

$$d_k(\overleftarrow{\mathfrak{S}}_u[a,b]) = (d_k\overleftarrow{\mathfrak{S}}_u)[a,b] \text{ if } \{u(a),u(b)\} \neq \{k,k+1\},$$

hence

$$\begin{split} &D(\overleftarrow{\mathfrak{S}}_{u}\mathcal{M}_{z}) = \\ &= (D\overleftarrow{\mathfrak{S}}_{u})\mathcal{M}_{z} + \quad \bigg(\sum_{\substack{k \in \mathbb{Z}: \\ u^{-1}(k) \leq z < u^{-1}(k+1)}} k - \sum_{\substack{k' \in \mathbb{Z}: \\ u^{-1}(k') > z \geq u^{-1}(k'+1)}} k'\bigg) \cdot \overleftarrow{\mathfrak{S}}_{u} = \end{split}$$

$$= (D \overleftarrow{\mathfrak{S}}_{u}) \mathcal{M}_{z} + z \cdot \overleftarrow{\mathfrak{S}}_{u} = (D \overleftarrow{\mathfrak{S}}_{u}) \mathcal{M}_{z} + \overleftarrow{\mathfrak{S}}_{u} \cdot (D \overleftarrow{\mathfrak{S}}_{s_{z}}).$$

Bosonic operators

Define the sequence of bosonic operators

- $\rho^{(1)} := \xi;$
- $\bullet \ \rho^{(k+1)} := \tfrac{[\rho^{(k)},D]}{k} = \tfrac{\rho^{(k)}\cdot D D\cdot \rho^{(k)}}{k}.$

Corollary

For any $k \in \mathbb{N}$ and $u, v \in S_{\mathbb{Z}}$, we have

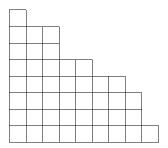
$$\rho^{(k)}(\overleftarrow{\mathfrak{S}}_{u}\overleftarrow{\mathfrak{S}}_{v})=(\rho^{(k)}\overleftarrow{\mathfrak{S}}_{u})\overleftarrow{\mathfrak{S}}_{v}+\overleftarrow{\mathfrak{S}}_{u}(\rho^{(k)}\overleftarrow{\mathfrak{S}}_{v}).$$

Theorem (N.)

Operators $\rho^{(k)}$, $k \in \mathbb{N}$ commute pairwise.

Theorem (dual Murnaghan-Nakayama)

$$ho^{(k)} s_{\lambda} := \sum_{\substack{\mu: \ \mu \subset \lambda, \ |\mu| = |\lambda| - k, \ \lambda \setminus \mu \ is \ a \ border \ strip}} (-1)^{ht(\lambda \setminus \mu) - 1} s_{\mu}.$$



Theorem (N.)

$$\rho^{(k)} \overleftarrow{\mathfrak{S}}_{u} := \sum_{w \text{ s.t...}} \pm \overleftarrow{\mathfrak{S}}_{w}.$$

For a partition $\lambda \in \mathbb{Y}$ we define operator ξ^{λ} as

$$\xi^{\lambda} := \sum_{\mu} \frac{\chi_{\mu}^{\lambda}}{z_{\mu}} \rho^{(\mu_1)} \cdots \rho^{(\mu_k)}.$$

Theorem

The operators $\xi^{\lambda},\ \lambda\in\mathbb{Y}$ commute pairwise and satisfy the following three properties

$$\begin{split} \xi^{\nu}\xi^{\mu} &= \sum_{\lambda} \mathcal{L}\mathcal{R}^{\lambda}_{\nu,\mu}\xi^{\lambda}; \\ \xi^{\lambda}(\overleftarrow{\mathfrak{S}}_{u} \overleftarrow{\mathfrak{S}}_{v}) &= \sum_{\nu,\mu} \mathcal{L}\mathcal{R}^{\lambda}_{\nu,\mu}(\xi^{\nu} \overleftarrow{\mathfrak{S}}_{u})(\xi^{\mu} \overleftarrow{\mathfrak{S}}_{v}); \\ \xi^{\lambda} \overleftarrow{\mathfrak{S}}_{w} &= \sum_{\substack{\ell(u) = |\lambda| \\ \ell(u^{-1}w) = \ell(w) - |\lambda|}} a_{\lambda,u} \overleftarrow{\mathfrak{S}}_{u^{-1}w}. \end{split}$$

Thank You!