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@ Motivations

© Some quadratic algebras

© Generalized Fomin-Kirillov algebras
@ Classical algebra 3T

© Multiplicative Dunkl elements

@ Elliptic three-term-relations algebra
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(@) In a few words, classical Schubert and Grothendieck
calculi are developed to solve problems in Enumerative
Algebraic Geometry and Algebraic Combinatorics.

For example the algebraic description of Schubert (or
Grothendieck, Chern-Schwartz-Macpherson, Severi,

..) classes in the cohomology theory (or K-theory)
of complete or parabolic flag varieties, Heisenberg
varieties, ... (of type A in this talk).
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The basic idea is to study the generating functions of
these objects and their properties using algebraic
methods.

For example, let NC,, (resp. NH,,) be the Nil-Coxeter
(resp. Nil-Hecke algebra) defined over Z, with
generators ey, - -+, e,_1, and relations

€€i116 = €116i€+1 (Coxeter relations),
eiej = eje; if |i—j| > 1 (locality relations),

2 _ 2 _
ef =0, resp. e = fe,

with parameter S in Nil-Hecke case.
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Theorem (S. Fomin, AK)

Let NC, (resp. NH,) be the nil-Coxeter (resp. nil-Hecke

algebra). Define A;(x) = [[;_1(1 + xeq—;).

Then the Cauchy kernel Cy(xy, -+ ,x,) := Hfz_ll Ai(x)
admits the following decompositions:

Co(x1, - xn) = Z Suw(xt,...,x,) ey inNCp;

= Z Gw(x1,-.-,Xn) - ew in NH,.

where &,, is the Lascoux-Schiitzenberger Schubert
polynomial and G,, the Grothendieck polynomial.
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(b) Truncated Dunkl operators

Theorem (Charles Dunkl, Eric Opdam)

Consider a finite complex reflection group
(W,S, V), S| =¢.

Then the algebra generated by mutually commutative
truncated Dunkl operators D, - - - Dy is isomorphic to
the coinvariant algebra of that group:

AW,S = C[Xla e fo]/<J17 e 7J£> = C[Dly ceey Dg]

where Ji, ..., J; denote the fundamental invariants of
the group (W, S, V).
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In particular, in the Weyl group case, the coinvariant
algebra is the cohomology ring H*(G/B, Q) of the flag
variety G/B, so the truncated Dunkl operators define a
system of generators of G/B.

Note that truncated Dunkl operators have natural
extensions for trigonometic, elliptic, (small) quantum
theories (e.g. K-theory, equivariant and elliptic
cohomology).

The main objective of this talk is to consider generalized
Dunkl elements in certain (non-homogeneous, non-
commutative) quadratic algebras. We restrict to type A.
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Some quadratic algebras

Let R be a commutative ring, char R = 0. We assume
that all parameters below belong to R.

Next, let us fix an integer n > 2. Consider the set of
variables {u; |1 <i,j < n} and the corresponding
(unital associative) algebra

Ap=R(uj|1<i,j<n).
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To distinguish the role of element u;; and the elements
uj with i # j, we set

Z ‘= Uuj.

Definition (Dunkl elements)

0; ::z,-—l—Zu,-jEAn.
JF#i

9/39



Let us compute commutators of Dunkl elements:

[0:,6,] = 0:0; — 0,0,

= [zi + ujj, zj + uji| zero curvature

+ [zi + zj, uj] translation invariance
n
+ [u,-j, Z zk] homogeneity
k=1

n Z{ (it wje] + [uiy wie] + [ui, uil+ }
« | +[z;, u] + 2k, uj] + [uix, Zj]
k#i,j .
dynamical Yang-Baxter relns.

+ Z {[u,-k, uj] + [uir, Ujk]}'

k<l - : :
Manin's nondiagonal relations
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Consider the six-term relations algebra
6T, := A,/(above terms).

Clearly, in 6T,, the Dunkl elements 6; generate a
commutative subalgebra.

Problem
Describe the group which is “FRT-dual” to 6T,,.
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Note that
6T,/(z1,...,2zn [uj, un] (Vi,j, k1))
is isomorphic to the polynomial algebra
Cluj |1 <i#j<n].

We leave to the audience the following questions:

(@) What is the subalgebra of 6T, /(z, ..., z,) generated
by the “simple roots” u; i1 (i=1,---,n—1)7

(b) Same question for the simple roots u; ;11
(i=1---,n—1)and —uy,.
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Calogero-Moser-type integrable systems

If we let the generators of 6T, act as

d ”_1—5,'1'
UU_

dx;’ Xj — Xj

Z;

then the 6; act as Dunkl operators for the
Calogero-Moser integrable system. The following
exchange relation holds:

Zi — Zj + Uj

Zillj = UjZj — = ——
! J

Contrary to this “honest” definition of Dunkl operators,
we introduce (equivariant) truncated Dunkl elements.
For this goal we need a different algebra.
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Generalized Fomin-Kirillov algebras

Let 5 € R. The generalized FK algebra 3T, 3 is the
quotient of 6T, by the 2-sided ideal generated by:

(Locality) [zi, ujx] = [ujj, u] = 0, for distinct i, j, k, I.
(Factorizibility) For distinct i, j, k we have
UjjlUjk = UjkUjk — Uik Ujj, Ujicljj = Uik Ujie — Uji Uik
(Unitarity) uj + uji = f.
(Exchange relation) There exists d € R such that
ziuj + u;izi = d, if i<y
(Central elements) g; € R, where

4,2 _
q,-j = uij — ﬁu,-j = —u,-juj,-.

14 / 39



Elements {u;} satisfying locality, factorizability and
unitarity conditions have the following properties:

@ (quantum-Yang-Baxter relations)

UjjUikUje — Uj Ui Ujj = [Uik7 qij]
UjjUikUje — Ujk Ui Ujj = [qjk7 Uik]

for all i, j, k distinct (follows from unitarity). Hence
we obtain the celebrated Kohno-Drinfeld relations

[gii + qjx, qik] = 0.
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@ (Coxeter relations)
Ujljlyy — UjUijlje = Ujqjj — qjkUijk.
@ (4-term relations of degree 3)
Ui/UjkU,'k+uikUi/Uj/—5Ui/Ujk = UijikU,'/+Ui/Uj/Ujk—5 Ujk Ujy.

Hint: for the proof, use associativity to write ujjujcu;
in two ways.
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@ (“cyclic” relations) Let 3 < p < n. Define

Cp,n = Uln(u2n e Upn)unl + U2n(u3n e Upnunl)un2
+ ...+ up,,(unl s u,,7p_1)u,,p.

Then in the algebra 3T, 3, one has:

1 p
Cp,n = Z < H Uap) Gpn H Uak-
a=p—1 a=n

These identities play an essential role in the study of
the structure of the algebra 3T, 3.
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Truncated Dunkl elements

The “equivariant” Dunkl elements are given by
9,‘ =z + Z uj.
J#i
The corresponding truncated Dunkl elements are:
9_,' = Z U,'j.
J#i

For example, if n = 4,

01 = wip + 13 + tha, 02 = 1 + Up3 + Ung

03 = u31 + usp + Uz, 04 = a1 + uso + uy3.
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Define the quantum elementary symmetric polynomial:

)= Y (IICMw)x

LIl ins=0 N jel jel
[1|=]J]=k

< enai({x51j € [LA]\ 1U J}).

Theorem (AK, Fomin)

egu(él, ce ,9,,) =0.

We view a polynomial P(xi,...,x,) as an integral of
motion in the algebra 3T, 3, if P(61,---,6,) = 0.
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Classical algebra 3T(")

Set 5 = 0 and consider the quotient

3T$,0) = 3Tho /{z1,..., Zn, {U i #j})-

Note, 3T$,O) has (g) generators u; (1 < i <j<n)and
(5) +2(3) +3(;) quadratic relations:

2 _ . . .
u; =0 if i</,
UjkUj = UjUj + Ujju e
Jk i Tk ik y =ik if i <j <k.
Ujjlje = Uji Uik + Uik Ujj,
The subalgebra (ujjr1|i=1,---,n—1) is isomorphic

to the Nil-Coxeter algebra NC,,.
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It is known that
Hilb(3TY, t) = [2]2 - [3]., dim3T7Y = 12,
Hilb(3T, £) = 22 B2 - [4]2, dim 3T = 242,
Hilb(3TY ) = [4]4 - [5]2 - [6]*, dim 3T < oo

Problem

1. Compute the Hilbert series Hilb(3T), ) for n > 6.
2. Find a monomial basis in the algebra 3T$,0), forn > 6.

3. Prove/disprove that dim 3T( ) = 400,

A strange observation: Hilb(Eg, t)/ HiIb(3TE,5), t) € Z[t].
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Let 3T§,aff) be the subalgebra of 3Tf,,0) generated by

uiivi (1 <i<n-1), —U1p.

—Uie

U1 — Up3 — U34 — Uss — Usg

Theorem (Y. Bazlov, AK)

The algebra 3T (if n > 2) is finite dimensional and
its Hilbert polynomial equals

1 — ¢iln=7)
Hilb(3TEM t) = [n], H
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Cohomology of flag varieties and 3T$70)

Theorem [S. Fomin, AK, 1992]
Z16y,- - ,0,] = H*(Fl,, Z),
where Fl,, denotes the complete flag variety of GL(n).

Proof consists of two parts.

Part |I. ex(01,---,0,) =0 if k> 1.
This follows from the cyclic relations mentioned above.

Therefore, the following natural map is an epimorphism:
20041, .0, = H (Fl,,Z) = Z[t1, . .., t,] /{ex(t1, ..., tn))
0; — t;.
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Part Il (Bruhat representation)
We define an action of 3TE,O) on the group ring of the
symmetric group S:

o if Owsy) = 6(w) + 1,
u,-jow—{st i £(ws;) (w)+ where w € §,,.

0 otherwise,

To see that this is an action, a computation in S3
implies that, for distinct i/, J, k,

(ujuj — uguy — uguy)ow =0  Yw € S,
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Under the above epimorphism
Z)04,- - ,0,] — H*(Fl,, Z),

the element 0; corresponds to multiplication by t; in
H*(Fl,,Z).

Hint: follows from Monk's formula, see e.g.
Macdonald's book on Schubert Calculus.

This completes the proof of the Theorem.
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Theorem (AK, Maeno)
There exist unique polynomials

Pu(ty, -+, ty) € Z[ty, -+ , tn]
such that
support(P,) C (n—1,---,1,0),
and, under Bruhat's representation,

Py(01, - ,0,)0ol=we€S,.
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Corollary

Pu(ti, ..., ty) = Gu(ty, ..., t),

where &,, is the Lascoux-Schiitzenberger Schubert
polynomial.

Corollary
Sy(b1,--- ,0,)0v = Z CuyW € Z[S,],

where ¢ (u,v,w € S, ) are the structure constants in
u,v UH ¥

| \

S, -6, = Z CZ',IVGW‘

wes,
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Conjecture (S. Fomin, AK)

IfweS,andm<n, &,(01, - ,0m,0,...,0), lies in
Cone™(3T) (ie. can be written as a positive
combination of monomials).

In particular, we expect

sy(f1,-+ ,0m,0,...,0) € Cone™ (3T,

Problem

Describe the cones of positive elements in 3T(®).
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Comments

According to Borel's theorem,

e H*(Fl,,Z) is generated by Chern classes of tautolo-
gical linear bundles Ch(L;) associated to simple roots;

@ the map 6; — Ch(L;) is a bijection.

We view the 6; as non-commutative Chern classes of

tautological vector bundles over flag varieties.

According to Grothendieck, any finite-dimensional vector
bundle over Fl, is isomorphic to €, , Lx.

By BBW, we can view s(61,--- ,6m,,0,...,0) as a
non-commutative version of the irreducible highest
weight representation V). We expect: L, is positive if

S)\(Hl, s ,Hm, 0, ce ,0) € COHe+(3Tg))).
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Multiplicative Dunkl elements (/5 # 0)

For x € R, define
hij(x) :== 1 + xuj.
Then hjj(x)hj(y) = hjj(x +y — Bxy), so that

By ) = (- 1+Xﬁx>'

Consider the localization

. 1
T,3=3T,
3Tns v H 1+ Bx — gyx? }i<j]
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Definition: multiplicative Dunkl elements

Fix generic x € R and define

Proposition (AK)

[©/,0]] =0 foralli=1,---,n.

The proof relies on the constant YBE, due to C.N. Yang
and Young:

hij(x) hic(x) i (x) = hj(x) hi(x) hj(x).
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Set ©,:=[];c, ;.
Theorem (AK)

> TIa+8x—xapes = ||| o

Jc[1,n] ied
[J=k Jj&J

where we note that (1 + fx — x2q,-j)h,.j.1(x) e 3TV,

The proof relies on the relations
hii (<) hix(y) = hix(y) hix(x)+hi (y) hix (x) = hix (x+y +Bxy)

with 7, j, k distinct.
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Elliptic functions and elliptic algebra 37,

Let g € C with |g| < 1. We consider the odd
(Riemann) theta function 6 : C — C, namely

Q(t) = (t; q)oo(q/t; q)oo; 0(_t) - —(9(1')
which should not be confused with the Dunkl element 6;.

It satisfies the 4-term relation:
O(xLty)d(zL£t)=0(xxt)0(yLz)+0(xxz)0(yLt).
Here we use the standard notation

O(x £y) =0(x+y)d(x—y).
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Next, we define Kronecker's sigma function to be

_0(t=X)
) = Gan)

(we skip the constant '(0) from the numerator of RHS).

Given a tuple (A1,...,\,) € C" (called dynamical
parameters), we define the following operator on the
space of meromorphic functions of n variables:

ujj == on-x(xi — X)) Kj

where Kj; is the permutation operator.
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The operator uj; satisfies the following relations:

Ujlje = Ui + upetp,  if 1 <j < k,ori>j>k
associative Yang-Baxter relations,

uj + u; =0, unitarity,

uj = p(xi = %) + (A = \),
(quasiconstant + constant)

[uj, u] =0, if i,j, k, | are distinct. (I

It inspires the following definition of an elliptic 3-term
algebra.

35 /39



Definition: elliptic three-term relations algebra

We define E3T, as the algebra over Q({qj;, ¥ij }1<izj<n)
with generators u;; (1 < i # j < n) subject to:

@) [ujj, u] = 0 and qjju = uwq;j if i, ), k, | are distinct.

2) Yjjuje = upic if i, j, k are distinct.

B ujuk = Upu + uguy  if i <j <k

@ ui=—uy,  @G=qGi V=i

® U,f- = 1j; + q;;; moreover 3&; = —§; € E3T, such that
5-— Yjj is central (i < j).
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Note: in the representation on meromorphic functions,
one can take

§ij = Uu;—uj(xi — X))

for free parameters u1, ..., 1, and then we have
55 - wu - Oui—uj()‘f - )‘j)‘

Theorem (AK)
The elements

R,'j ZZ&j-I-U,‘jEE?)Tm I#_j

are invertible and satisfy the (constant) Yang-Baxter
relations

R,'J'R,'k/'-\)jk = Rij,'kR,'j if / <j < k
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Extend E3T, by elements L;, ..., L, such that, for all
1</,
LiL;Rj = R;L;L;.

Corollary (AK)

The following multiplicative Dunkl elements pairwise
commute:

o< (L) (fie)

a=i—1
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If L; =1, the ©; are “truncated Ruijsenaars-Macdonald
operators’ and we have the following explicit formula for
quantum elementary symmetric polynomials:

Z Hw,-j if n even,

qu = { Acln] i€A
en (@1, ,@n) - \A|C:[n;]2 JEA

0 if n odd.

If L; = T; 4 (Ruijssenaars shift operator) then the ©; are
known as Ruijsenaars-Macdonald operators.

Similar formulas can be obtained for the case L; = x;.
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