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Motivations



History on W -algebras

Let Vir be the Virasoro algebra, which is an infinite-dimensional
Lie algebra

Vir =
⊕
n∈Z

CLn ⊕ CC

with the defining relations

[Lm,Ln] = (m − n)Lm+n +
m3 − m

12
δm+n,0C, [Ln,C] = 0.

The Virasoro algebra plays an important role in the 2d CFTs
and also has a rich mathematical structure in the rep theory.

In the classification of 2d CFTs, Zamolodchikov found a
generalization of Vir, called the W3-algebra, which is generated
by Ln, Sn, and Ln satisfies the Virasoro relations. However
[Sm,Sn] contains infinite sum of quadratic forms of Ln and thus
W3 is not just a Lie algebra – W3 forms a vertex algebra. 2



Fateev and Lukyanov also found a family of generalizations of
W3-algebra: Wn-algebras (=WAn−1), WBn, WCn, ... etc.

Feigin and Frenkel gave mathematical definitions of these
algebras: let g be a simple Lie algebra and V k (g) the affine
vertex algebra of g at level k . Then the (principal) W -algebra of
g at level k is defined by the Drinfeld-Sokolov reduction

W k (g) = H0
DS(V

k (g)).

By construction, the W -algebras are vertex algebras. For
g = sln, W k (sln) is isomorphic to the Wn-algebra. In particular,
W k (sl2) is isomorphic to the Virasoro (vertex) algebra of the
central charge c(k) = 1 − 6(k + 1)2/(k + 2).
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Feigin and Semikhatov also found a family of genralizations of
V k (sl2), called the W (2)

n -algebras. For n = 2, W (2)
2 = V k (sl2)

and W (2)
3 is isomorphic to the Bershadsky-Polyakov algebra,

which is geberated by en,hn, fn,Ln, and [em, fn] contains a linear
term of Ln and infinite sum of quadratic forms of hn, and thus
not a Lie algebra. W (2)

n don’t appear as examples of W k (g).

Kac, Roan and Wakimoto found generalizations of W k (g) by
generalizing the DS-reductions: let g be a simple Lie
(super)algebra and f an (even) nilpotent element in g. Then

W k (g, f ) := H0
f (V

k (g)),

the (affine) W -algebra associated to g, f at level k .

• W k (g,0) = V k (g).
• W k (g, fprin) = W k (g), where fprin is a principal nilp ele.
• W k (sln, fsub) = W (2)

n , where fsub is a subregular nilp ele. 4



Madsen-Ragoucy observations

Consider the case g = sl3. Let f be a nilpotent element in sl3.
Then the Jordan form of f has only 0 in the diagonal entries
and thus is one of the followings: 0 0 0

1 0 0
0 1 0

 ,

 0 0 0
1 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 0

 ,

which corresponds to the partitions (3), (2,1), (13) of 3, called
principal, subregular, zero, respectively. Thus we obtain two
families of W -algebras from V k (sl3):

• W k (sl3, fprin) = the Zamolodchikov W3-algebra.
• W k (sl3, fsub) = the Bershadsky-Polyakov (BP) algebra.
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Madsen and Ragoucy suggested the W3-algebra is obtained
from the BP-algebra by a quantum Hamiltonian reduction
commuting the following diagram:

V k (sl3)
H0

fprin
(?)

//

H0
fsub

(?)
&&

Wk (sl3, fprin)

Wk (sl3, fsub)

∃quantum Hamiltonian reduction

88

Questions:
1) Want to understand the reason why this happens.
2) Want to get generalizations.

Our goal is to prove the Madsen-Ragoucy observations and
find generalizations using reduction by stages.
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Family of W -algebras

Let V be a vertex algebra and ZhuV = V/(V ◦ V ), where

V ◦ V = Span{a ◦ b | a,b ∈ V}, a ◦ b =
∞∑

j=0

(
∆(a)

j

)
a(j−2)b,

a(z) =
∑

n∈Z a(n)z−n−1 (vertex operators) and ∆(a) = the
conformal weight of a. Then ZhuV becomes an associative
algebra (Zhu algebra) by the product induced from

a ∗ b =
∞∑

j=0

(
∆(a)

j

)
a(j−1)b

and there exists one-to-one correspondence between simple
modules of V and simple modules of ZhuV (the Zhu theorem).
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· V = V k (g) ⇒ ZhuV k (g) = U(g) (I.Frenkel-Zhu).
· V = W k (g, f ) ⇒ ZhuW k (g, f ) = U(g, f )

(Arakawa, DeSole-Kac),

where U(g, f ) is the finite W -algebra of g, f , introduced by
Premet (cf. Weinan & Hongmei’s talk) defined by

U(g, f ) = H0
f (U(g)).

· U(g,0) = U(g)

· U(g, fprin) = Z (g): center of U(g) (Kostant)
· U(sln, (mℓ)) = Cherednik’s Yangian of level ℓ (Ragoucy-Sorba)
· U(sln, f ) = shifted Yangian of type A (Brundan-Klechshev)
· U(g, (mℓ)) = shifted twisted Yangian of type BCD

if g = BCD (Brown)
· U(sl(m|n), f ) = shifted super Yangian of type A

(Briot-Ragoucy, Brown-Brundan-Goodwin, Peng)
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Recall: using the PBW filtration on U(g),

grU(g) ≃ S(g) = C[g∗] (Possion algebra)

Thus g∗ is a Poisson variety, and the symplectic leaves of g∗ are
coadjoint orbits O∗.

The finite W -algebra has a canonical filtration (Khazdan
filtration), and the associated graded algebra also becomes a
Poisson algebra (Premet, Gan-Ginzburg, Losev):

grU(g, f ) ≃ C[Sf ],

where Sf is the Slodowy slice of g at f (defined in next slide).
We have

C[Sf ] = H0
f (C[g

∗]).
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Suppose that f ̸= 0. Then the Jacobson-Morozov theorem
implies that there exists an sl2-triple {e,h, f} ⊂ g containing our
choice of f . Then

Sf = f + ge ⊂ g ≃ g∗.

Let h be a Cartan subalgebra of g and h ∈ h.
A pair (f ,h) is called a good pair if
(1) adh defines a Z-grading on g =

⊕
j∈Z gj , where

gj = {a ∈ g | [h,a] = ja}
(2) f ∈ g−2

(3) ad f : gj → gj−2 is injective for j ≥ 1 and surjective for j ≤ 1.

For example, we may choose h in the sl2-triple {e,h, f}
(But in general, we have more options for h. Classifications:
Elashvili-Kac, Hoyt).
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By the good conditions,
⟨a,b⟩ := (f |[a,b]) = ([f ,a]|b), a,b ∈ g1

defines a non-deg. skew-symmetric (=symplectic) form on g1.

Let l be a Lagrangian in g1 (= a maximal isotropic subspace in
g1) and m a nilpotent subalgebra

m = l⊕ g≥2.

For example, in case g = sl3,

f = fprin =

0 0 0
1 0 0
0 1 0

 ⇒ m = n+ =

0 ∗ ∗
0 0 ∗
0 0 0

,

f = fsub =

0 0 0
1 0 0
0 0 0

 ⇒ m =

0 ∗ ∗
0 0 0
0 0 0

.
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Let M = exp(m) a unipotent Lie group. Then the coadjoint
action of M on g∗ is Hamiltonian with the moment map

µ : g∗ ≃ g → m∗, a 7→ (a | ·).

Let χ = (f |·) ∈ m∗. Gan-Ginzburg shows that

Sf ≃ µ−1(χ)/M =: g∗//M.

The RHS is called the Hamiltonian reduction of g∗ by M at χ
(Ivan Sechin’s talk). Then the Poisson structure of Sf is induced
from g∗.
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Reduction by stages

Let X be a Poisson variety with a Hamiltonian M2-action and
M1 a normal Lie subgroup of M2. Then we obtain two Poisson
varieties X//M1, X//M2 from X by using the Hamiltonian
reductions. But, under suitable assumptions, we may define a
Hamiltonian M2/M1-action on X//M1 such that the following
diagram commutes:

X
//M2

//

//M1
&&

X//M2

X//M1

//(M2/M1)

88

This procedure is called the reduction by stages since we
obtain X//M2 by stages. We will apply for X = g∗.
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Morgan conjectures

Morgan applied the reduction by stages for the Slodowy slices.

Conjecture (Morgan, PhD thesis)
Let g = sln and Of1 , Of2 nilpotent orbits in sln at f1, f2 such that
Of1 < Of2 (i.e. Of1 ⊂ Of2). Then Sf2 is obtained as a Hamiltonian
reduction of Sf1 .

Theorem (Morgan)
This is true for n = 3.

g∗ = sl∗3
//

''

Sfprin = g∗//M2

Sfsub = g∗//M1

∃ Hamiltonian reduction

77

This is a classical analog of the Madsen-Ragoucy observations. 14



Reduction by stages for Slodowy
slices / finite W -algebras



Step conditions

Let (f1,h1), (f2,h2) be good pairs in g s.t. h1,h2 ∈ h, and

g =
⊕
j∈Z

g
(1)
j =

⊕
j∈Z

g
(2)
j

the Z-gradings by adh1, adh2. Then we have m1,m2, and
Sf1 ≃ µ−1

1 (χ1)/M1 and Sf2 ≃ µ−1
2 (χ2)/M2.

Definition
(f1,h1) is a step towards (f2,h2) if f0 := f2 − f1 ∈ g

(1)
0 ∩ g

(2)
−2, and

g
(1)
≥2 ⊂ g

(2)
≥1 ⊂ g

(1)
≥0, g

(1)
1 ⊂

2⊕
j=0

g
(2)
j , g

(2)
1 ⊂

2⊕
j=0

g
(1)
j .

Note: we will explain examples later.
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Main results for Slodowy slices / finite W -algebras

By the step conditions,

• the nilpotent orbits Of1 of f1 is contained in the Zariski
closure Of2 of the nilpotent orbits of f2 (i.e. Of1 < Of2).

• m1 ⊂ m2 ideal and m2 = m1 ⊕m0 with m0 := g
(1)
0 ∩ g

(2)
≥2.

• Sf1 has a Hamiltonian M0-action, where
M0 = exp(m0) ≃ M2/M1.

Theorem (G.-Juillard)
Assume that (f1,h1) is a step towards (f2,h2). Then

1. Sf2 ≃ Sf1//M0.

2. U(g, f2) ≃ H0
f0
(U(g, f1)).
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Examples:

• Let g = sln, a1,a2 ∈ N such that 1 ≤ a1 < a2 ≤ n and
f1 = (a1,1n−a1), f2 = (a2,1n−a2). These are called
hook-type nilpotent elements:

Then f1, f2 satisfies the step conditions.
• Let g = sl4, f1 = (2,12) and f2 = (22).
• Let g = so2n+1, f1 is subregular and f2 is principal.
• Let g = sp2n, f1 = (22,12n−4) (short nilpotent) and f2 is

principal.
• Let g = G2, f1 is Ã1 and f2 is subregular.
• (Maybe) more...
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Applications: Skryabin equivalence by stages

Recall χ(u) = (f |u). Let Iχ = (u − χ(u) | u ∈ m) be a two-sided
ideal in U(g) and Qχ = U(g)/Iχ. Then Qadm

χ has a structure of
an associative algebra induced from U(g) and

U(g, f ) ≃ Qadm
χ

(D’Andrea-DeConcini-DeSole-Heluani-Kac). The RHS is the
original definition of Premet.

A g-module E is called Whittaker for χ if u − χ(u) acts on E
locally nilpotently for all u ∈ m.

Let g−modχ be the category of fin. gen. Whittaker g-modules
for χ. For E ∈ g−modχ,

Wh(E) := {m ∈ E | (u − χ(u))m = 0,u ∈ m}

becomes a U(g, f )-module.
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Let U(g, f )−mod be the category of fin. gen. U(g, f )-modules.
For V ∈ U(g, f )−mod,

Ind(V ) := Qχ ⊗
U(g,f )

V

becomes a Whittaker g-module. Moreover,

g−modχ
Wh
⇄
Ind

U(g, f )−mod

gives a quasi-inverse category equivalence. This is called the
Skryabin equivalence.
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Theorem (G.-Juillard)
Assume that (f1,h1) is a step towards (f2,h2). Then the
following diagram commutes:

g−modχ2

Wh2
//

Wh1

((

U(g, f2)−mod
Ind2

oo

Ind0vv

U(g, f1)−modχ0

Ind1

hh

Wh0
66

and each ⇄ are quasi-inverse equivalences.

Remark: E. Masut shows that Theorem is compatible with
Goodwin’s translation functors (arXiv:2404.07859).

20



Reduction by stages for affine
W -algebras



Twisted Gan-Ginzburg Theorem

Recall: W k (g, f ) = H0
f (V

k (g)).
Claim: W k (g, f2) ≃ H0

f0
(W k (g, f1)).

Want:
H0

f2(V
k (g)) 99K H0

f0(H
0
f1(V

k (g))),

but it is difficult to find such a good map (technical difficulty).

By the step conditions,
· n1 := g

(1)
≥1 ⊃ m1, · n2 := n1 ⊕m0 ⊃ m2.

Then Ni = exp(ni) acts on n∗i by the coadjoint action (i = 1,2).
Set Oi = Ni · χi ⊂ n∗i with χi = (fi | ·) ∈ n∗i .

Proposition (twisted version of Gan-Ginzburg)

Sfi ≃ µ−1
i (Oi)/Ni .

⇒ C[Sfi ] ≃ H0
Oi
(C[g∗]).
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Proposition

U(g, fi) ≃ H0
Oi
(U(g)).

Hence
H0
O2

(U(g)) ≃ H0
f0(H

0
O1

(U(g))).

This is, in fact, the double complex isomorphism.

Claim

W k (g, fi) ≃ H0
Oi
(V k (g)).

Then we can find a vertex algebra homomorphism

H0
O2

(V k (g)) → H0
f0(H

0
O1

(V k (g))).
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Main results for affine W -algebras

Conjecture

grH0
Oi
(V k (g)) ≃ C[J∞Sfi ].

• In the LHS, gr is defined by the Li filtration.
• In the RHS, J∞Sfi = the arc space of Sfi

• If the conjecture is true, the claim holds.
• The conjecture is true for hook-types f1, f2 in sln.

Theorem (G.-Juillard, in progress)
Assume that (f1,h1) and (f2,h2) satisfy the step conditions and
Conjecture. Then

W k (g, f2) ≃ H0
f0(W

k (g, f1)).
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