Reduction by stages on *W***-algebras**

Naoki Genra (joint work with Thibault Juillard)

Representation Theory, Integrable Systems and Related Topics Satellite conference for ICBS-2024

Beijing Institute of Mathematical Sciences and Applications, Huairou, Beijing, China, July 11, 2024

Motivations

History on *W*-algebras

Let Vir be the Virasoro algebra, which is an infinite-dimensional Lie algebra

$$\operatorname{Vir} = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}L_n \oplus \mathbb{C}C$$

٦

with the defining relations

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m+n,0}C, \quad [L_n, C] = 0.$$

The Virasoro algebra plays an important role in the 2d CFTs and also has a rich mathematical structure in the rep theory.

In the classification of 2d CFTs, Zamolodchikov found a generalization of Vir, called the W_3 -algebra, which is generated by L_n , S_n , and L_n satisfies the Virasoro relations. However $[S_m, S_n]$ contains infinite sum of quadratic forms of L_n and thus W_3 is not just a Lie algebra – W_3 forms a vertex algebra.

Fateev and Lukyanov also found a family of generalizations of W_3 -algebra: W_n -algebras (= WA_{n-1}), WB_n , WC_n , ... etc.

Feigin and Frenkel gave mathematical definitions of these algebras: let \mathfrak{g} be a simple Lie algebra and $V^k(\mathfrak{g})$ the affine vertex algebra of \mathfrak{g} at level k. Then the (principal) *W*-algebra of \mathfrak{g} at level k is defined by the Drinfeld-Sokolov reduction

$$W^k(\mathfrak{g}) = H^0_{DS}(V^k(\mathfrak{g})).$$

By construction, the *W*-algebras are vertex algebras. For $\mathfrak{g} = \mathfrak{sl}_n$, $W^k(\mathfrak{sl}_n)$ is isomorphic to the *W*_n-algebra. In particular, $W^k(\mathfrak{sl}_2)$ is isomorphic to the Virasoro (vertex) algebra of the central charge $c(k) = 1 - 6(k+1)^2/(k+2)$.

Feigin and Semikhatov also found a family of genralizations of $V^k(\mathfrak{sl}_2)$, called the $W_n^{(2)}$ -algebras. For n = 2, $W_2^{(2)} = V^k(\mathfrak{sl}_2)$ and $W_3^{(2)}$ is isomorphic to the Bershadsky-Polyakov algebra, which is geberated by e_n , h_n , f_n , L_n , and $[e_m, f_n]$ contains a linear term of L_n and infinite sum of quadratic forms of h_n , and thus not a Lie algebra. $W_n^{(2)}$ don't appear as examples of $W^k(\mathfrak{g})$.

Kac, Roan and Wakimoto found generalizations of $W^k(\mathfrak{g})$ by generalizing the DS-reductions: let \mathfrak{g} be a simple Lie (super)algebra and *f* an (even) nilpotent element in \mathfrak{g} . Then

$$W^k(\mathfrak{g},f):=H^0_f(V^k(\mathfrak{g})),$$

the (affine) W-algebra associated to g, f at level k.

•
$$W^k(\mathfrak{g}, 0) = V^k(\mathfrak{g}).$$

- $W^{k}(\mathfrak{g}, f_{\text{prin}}) = W^{k}(\mathfrak{g})$, where f_{prin} is a principal nilp ele.
- $W^k(\mathfrak{sl}_n, f_{sub}) = W_n^{(2)}$, where f_{sub} is a subregular nilp ele.

Consider the case $g = \mathfrak{sl}_3$. Let *f* be a nilpotent element in \mathfrak{sl}_3 . Then the Jordan form of *f* has only 0 in the diagonal entries and thus is one of the followings:

$$\left(\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right), \quad \left(\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right), \quad \left(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right),$$

which corresponds to the partitions (3), (2, 1), (1³) of 3, called principal, subregular, zero, respectively. Thus we obtain two families of *W*-algebras from $V^k(\mathfrak{sl}_3)$:

- $W^k(\mathfrak{sl}_3, f_{\mathfrak{prin}}) =$ the Zamolodchikov W_3 -algebra.
- $W^k(\mathfrak{sl}_3, f_{\mathfrak{sub}}) =$ the Bershadsky-Polyakov (BP) algebra.

Madsen and Ragoucy suggested the W_3 -algebra is obtained from the BP-algebra by a quantum Hamiltonian reduction commuting the following diagram:

Questions:

- 1) Want to understand the reason why this happens.
- 2) Want to get generalizations.

Our goal is to prove the Madsen-Ragoucy observations and find generalizations using reduction by stages.

Let *V* be a vertex algebra and Zhu $V = V/(V \circ V)$, where

$$V \circ V = \text{Span}\{a \circ b \mid a, b \in V\}, \quad a \circ b = \sum_{j=0}^{\infty} {\Delta(a) \choose j} a_{(j-2)}b,$$

 $a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$ (vertex operators) and $\Delta(a)$ = the conformal weight of *a*. Then Zhu *V* becomes an associative algebra (Zhu algebra) by the product induced from

$$a * b = \sum_{j=0}^{\infty} {\Delta(a) \choose j} a_{(j-1)}b$$

and there exists one-to-one correspondence between simple modules of V and simple modules of Zhu V (the Zhu theorem).

- $V = V^k(\mathfrak{g}) \Rightarrow \mathsf{Zhu} \ V^k(\mathfrak{g}) = U(\mathfrak{g}) \ (\mathsf{I}.\mathsf{Frenkel-Zhu}).$
- $\cdot V = W^k(\mathfrak{g}, f) \Rightarrow \mathsf{Zhu} \ W^k(\mathfrak{g}, f) = U(\mathfrak{g}, f)$

(Arakawa, DeSole-Kac),

where $U(\mathfrak{g}, f)$ is the finite *W*-algebra of \mathfrak{g}, f , introduced by Premet (cf. Weinan & Hongmei's talk) defined by

$$U(\mathfrak{g},f)=H^0_f(U(\mathfrak{g})).$$

- $\cdot U(\mathfrak{g},0) = U(\mathfrak{g})$
- $\cdot U(\mathfrak{g}, f_{\text{prin}}) = Z(\mathfrak{g})$: center of $U(\mathfrak{g})$ (Kostant)
- $\cdot U(\mathfrak{sl}_n,(m^\ell)) =$ Cherednik's Yangian of level ℓ (Ragoucy-Sorba)
- · $U(\mathfrak{sl}_n, f) =$ shifted Yangian of type A (Brundan-Klechshev)
- · $U(\mathfrak{g}, (m^{\ell}))$ = shifted twisted Yangian of type *BCD* if $\mathfrak{g} = BCD$ (Brown)
- · $U(\mathfrak{sl}(m|n), f)$ = shifted super Yangian of type A (Briot-Ragoucy, Brown-Brundan-Goodwin, Peng)

Recall: using the PBW filtration on $U(\mathfrak{g})$,

gr $U(\mathfrak{g}) \simeq S(\mathfrak{g}) = \mathbb{C}[\mathfrak{g}^*]$ (Possion algebra)

Thus \mathfrak{g}^* is a Poisson variety, and the symplectic leaves of \mathfrak{g}^* are coadjoint orbits \mathcal{O}^* .

The finite *W*-algebra has a canonical filtration (Khazdan filtration), and the associated graded algebra also becomes a Poisson algebra (Premet, Gan-Ginzburg, Losev):

gr $U(\mathfrak{g}, f) \simeq \mathbb{C}[\mathcal{S}_f],$

where S_f is the Slodowy slice of g at f (defined in next slide). We have

$$\mathbb{C}[\mathcal{S}_f] = H^0_f(\mathbb{C}[\mathfrak{g}^*]).$$

Suppose that $f \neq 0$. Then the Jacobson-Morozov theorem implies that there exists an \mathfrak{sl}_2 -triple $\{e, h, f\} \subset \mathfrak{g}$ containing our choice of f. Then

$$\mathcal{S}_f = f + \mathfrak{g}^e \subset \mathfrak{g} \simeq \mathfrak{g}^*.$$

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and $h \in \mathfrak{h}$. A pair (f, h) is called a good pair if (1) ad *h* defines a \mathbb{Z} -grading on $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$, where $\mathfrak{g}_i = \{ a \in \mathfrak{g} \mid [h, a] = ja \}$ (2) $f \in \mathfrak{g}_{-2}$ (3) ad $f: \mathfrak{g}_j \to \mathfrak{g}_{j-2}$ is injective for $j \ge 1$ and surjective for $j \le 1$. For example, we may choose h in the \mathfrak{sl}_2 -triple $\{e, h, f\}$ (But in general, we have more options for h. Classifications: Elashvili-Kac, Hovt).

By the good conditions,

 $\langle a,b \rangle := (f|[a,b]) = ([f,a]|b), \quad a,b \in \mathfrak{g}_1$

defines a non-deg. skew-symmetric (=symplectic) form on g_1 .

Let \mathfrak{l} be a Lagrangian in \mathfrak{g}_1 (= a maximal isotropic subspace in $\mathfrak{g}_1)$ and \mathfrak{m} a nilpotent subalgebra

$$\mathfrak{m} = \mathfrak{l} \oplus \mathfrak{g}_{\geq 2}.$$

For example, in case $\mathfrak{g} = \mathfrak{sl}_3$,

$$f = f_{\text{prin}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow \mathfrak{m} = \mathfrak{n}_{+} = \begin{pmatrix} 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{pmatrix},$$
$$f = f_{\text{sub}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \mathfrak{m} = \begin{pmatrix} 0 & * & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Let $M = \exp(\mathfrak{m})$ a unipotent Lie group. Then the coadjoint action of M on \mathfrak{g}^* is Hamiltonian with the moment map

$$\mu \colon \mathfrak{g}^* \simeq \mathfrak{g}
ightarrow \mathfrak{m}^*, \quad a \mapsto (a | \cdot).$$

Let $\chi = (f | \cdot) \in \mathfrak{m}^*$. Gan-Ginzburg shows that

$$\mathcal{S}_f \simeq \mu^{-1}(\chi)/M =: \mathfrak{g}^*//M.$$

The RHS is called the Hamiltonian reduction of \mathfrak{g}^* by M at χ (Ivan Sechin's talk). Then the Poisson structure of S_f is induced from \mathfrak{g}^* .

Reduction by stages

Let *X* be a Poisson variety with a Hamiltonian M_2 -action and M_1 a normal Lie subgroup of M_2 . Then we obtain two Poisson varieties $X//M_1$, $X//M_2$ from *X* by using the Hamiltonian reductions. But, under suitable assumptions, we may define a Hamiltonian M_2/M_1 -action on $X//M_1$ such that the following diagram commutes:

This procedure is called the reduction by stages since we obtain $X//M_2$ by stages. We will apply for $X = \mathfrak{g}^*$.

Morgan applied the reduction by stages for the Slodowy slices.

Conjecture (Morgan, PhD thesis)

Let $\mathfrak{g} = \mathfrak{sl}_n$ and \mathcal{O}_{f_1} , \mathcal{O}_{f_2} nilpotent orbits in \mathfrak{sl}_n at f_1, f_2 such that $\mathcal{O}_{f_1} < \mathcal{O}_{f_2}$ (i.e. $\mathcal{O}_{f_1} \subset \overline{\mathcal{O}}_{f_2}$). Then \mathcal{S}_{f_2} is obtained as a Hamiltonian reduction of \mathcal{S}_{f_1} .

Theorem (Morgan)

This is true for n = 3.

This is a classical analog of the Madsen-Ragoucy observations. ¹⁴

Reduction by stages for Slodowy slices / finite *W*-algebras

Let (f_1, h_1) , (f_2, h_2) be good pairs in \mathfrak{g} s.t. $h_1, h_2 \in \mathfrak{h}$, and

$$\mathfrak{g}=igoplus_{j\in\mathbb{Z}}\mathfrak{g}_{j}^{(1)}=igoplus_{j\in\mathbb{Z}}\mathfrak{g}_{j}^{(2)}$$

the \mathbb{Z} -gradings by ad h_1 , ad h_2 . Then we have $\mathfrak{m}_1, \mathfrak{m}_2$, and $\mathcal{S}_{f_1} \simeq \mu_1^{-1}(\chi_1)/M_1$ and $\mathcal{S}_{f_2} \simeq \mu_2^{-1}(\chi_2)/M_2$.

Definition

 (f_1, h_1) is a step towards (f_2, h_2) if $f_0 := f_2 - f_1 \in \mathfrak{g}_0^{(1)} \cap \mathfrak{g}_{-2}^{(2)}$, and

$$\mathfrak{g}_{\geq 2}^{(1)} \subset \mathfrak{g}_{\geq 1}^{(2)} \subset \mathfrak{g}_{\geq 0}^{(1)}, \quad \mathfrak{g}_1^{(1)} \subset \bigoplus_{j=0}^2 \mathfrak{g}_j^{(2)}, \quad \mathfrak{g}_1^{(2)} \subset \bigoplus_{j=0}^2 \mathfrak{g}_j^{(1)}.$$

Note: we will explain examples later.

By the step conditions,

- the nilpotent orbits O_{f1} of f1 is contained in the Zariski closure O_{f2} of the nilpotent orbits of f2 (i.e. O_{f1} < O_{f2}).
- $\mathfrak{m}_1 \subset \mathfrak{m}_2$ ideal and $\mathfrak{m}_2 = \mathfrak{m}_1 \oplus \mathfrak{m}_0$ with $\mathfrak{m}_0 := \mathfrak{g}_0^{(1)} \cap \mathfrak{g}_{>2}^{(2)}$.
- S_{f_1} has a Hamiltonian M_0 -action, where $M_0 = \exp(\mathfrak{m}_0) \simeq M_2/M_1$.

Theorem (G.-Juillard)

Assume that (f_1, h_1) is a step towards (f_2, h_2) . Then

1.
$$\mathcal{S}_{f_2} \simeq \mathcal{S}_{f_1} / / M_0.$$

2. $U(\mathfrak{g}, f_2) \simeq H^0_{f_0}(U(\mathfrak{g}, f_1)).$

Examples:

• Let $\mathfrak{g} = \mathfrak{sl}_n$, $a_1, a_2 \in \mathbb{N}$ such that $1 \leq a_1 < a_2 \leq n$ and $f_1 = (a_1, 1^{n-a_1})$, $f_2 = (a_2, 1^{n-a_2})$. These are called hook-type nilpotent elements:

Then f_1 , f_2 satisfies the step conditions.

- Let $\mathfrak{g} = \mathfrak{sl}_4$, $f_1 = (2, 1^2)$ and $f_2 = (2^2)$.
- Let $\mathfrak{g} = \mathfrak{so}_{2n+1}$, f_1 is subregular and f_2 is principal.
- Let $\mathfrak{g} = \mathfrak{sp}_{2n}$, $f_1 = (2^2, 1^{2n-4})$ (short nilpotent) and f_2 is principal.
- Let $\mathfrak{g} = G_2$, f_1 is \widetilde{A}_1 and f_2 is subregular.
- (Maybe) more...

Applications: Skryabin equivalence by stages

Recall $\chi(u) = (f|u)$. Let $I_{\chi} = (u - \chi(u) | u \in \mathfrak{m})$ be a two-sided ideal in $U(\mathfrak{g})$ and $Q_{\chi} = U(\mathfrak{g})/I_{\chi}$. Then $Q_{\chi}^{\operatorname{ad}\mathfrak{m}}$ has a structure of an associative algebra induced from $U(\mathfrak{g})$ and

$$U(\mathfrak{g},f)\simeq Q_{\chi}^{\mathrm{ad}\,\mathfrak{m}}$$

(D'Andrea-DeConcini-DeSole-Heluani-Kac). The RHS is the original definition of Premet.

A g-module *E* is called Whittaker for χ if $u - \chi(u)$ acts on *E* locally nilpotently for all $u \in \mathfrak{m}$.

Let $\mathfrak{g}-\mathrm{mod}_{\chi}$ be the category of fin. gen. Whittaker \mathfrak{g} -modules for χ . For $E \in \mathfrak{g}-\mathrm{mod}_{\chi}$,

 $Wh(E) := \{m \in E \mid (u - \chi(u))m = 0, u \in m\}$

becomes a $U(\mathfrak{g}, f)$ -module.

Let $U(\mathfrak{g}, f)$ -mod be the category of fin. gen. $U(\mathfrak{g}, f)$ -modules. For $V \in U(\mathfrak{g}, f)$ -mod,

$$\operatorname{Ind}(V) := \mathcal{Q}_{\chi} \underset{U(\mathfrak{g},f)}{\otimes} V$$

becomes a Whittaker g-module. Moreover,

$$\mathfrak{g}-\mathrm{mod}_{\chi} \underset{\mathrm{Ind}}{\overset{\mathrm{Wh}}{\rightleftharpoons}} U(\mathfrak{g},f) - \mathrm{mod}$$

gives a quasi-inverse category equivalence. This is called the Skryabin equivalence.

Theorem (G.-Juillard)

Assume that (f_1, h_1) is a step towards (f_2, h_2) . Then the following diagram commutes:

and each \rightleftharpoons are quasi-inverse equivalences.

Remark: E. Masut shows that Theorem is compatible with Goodwin's translation functors (arXiv:2404.07859).

Reduction by stages for affine *W*-algebras

Twisted Gan-Ginzburg Theorem

Recall: $W^k(\mathfrak{g}, f) = H^0_f(V^k(\mathfrak{g})).$ Claim: $W^k(\mathfrak{g}, f_2) \simeq H^0_{f_0}(W^k(\mathfrak{g}, f_1)).$ Want:

$$H^0_{f_2}(V^k(\mathfrak{g})) \dashrightarrow H^0_{f_0}(H^0_{f_1}(V^k(\mathfrak{g}))),$$

but it is difficult to find such a good map (technical difficulty).

By the step conditions,

 $\begin{array}{l} \cdot \mathfrak{n}_1 := \mathfrak{g}_{\geq 1}^{(1)} \supset \mathfrak{m}_1, \quad \cdot \mathfrak{n}_2 := \mathfrak{n}_1 \oplus \mathfrak{m}_0 \supset \mathfrak{m}_2. \\ \text{Then } N_i = \exp(\mathfrak{n}_i) \text{ acts on } \mathfrak{n}_i^* \text{ by the coadjoint action } (i = 1, 2). \\ \text{Set } \mathcal{O}_i = N_i \cdot \chi_i \subset \mathfrak{n}_i^* \text{ with } \chi_i = (f_i \mid \cdot) \in \mathfrak{n}_i^*. \end{array}$

Proposition (twisted version of Gan-Ginzburg)

$$\mathcal{S}_{f_i} \simeq \mu_i^{-1}(\mathcal{O}_i)/N_i.$$

 $\Rightarrow \mathbb{C}[\mathcal{S}_{f_i}] \simeq H^0_{\mathcal{O}_i}(\mathbb{C}[\mathfrak{g}^*]).$

Proposition

 $U(\mathfrak{g}, f_i) \simeq H^0_{\mathcal{O}_i}(U(\mathfrak{g})).$

Hence

$$H^0_{\mathcal{O}_2}(U(\mathfrak{g}))\simeq H^0_{f_0}(H^0_{\mathcal{O}_1}(U(\mathfrak{g}))).$$

This is, in fact, the double complex isomorphism.

Claim

 $W^k(\mathfrak{g}, f_i) \simeq H^0_{\mathcal{O}_i}(V^k(\mathfrak{g})).$

Then we can find a vertex algebra homomorphism

$$H^0_{\mathcal{O}_2}(V^k(\mathfrak{g})) \to H^0_{f_0}(H^0_{\mathcal{O}_1}(V^k(\mathfrak{g}))).$$

Main results for affine W-algebras

Conjecture

 $\operatorname{\mathsf{gr}} H^0_{\mathcal{O}_i}(V^k(\mathfrak{g})) \simeq \mathbb{C}[J_\infty \mathcal{S}_{f_i}].$

- In the LHS, gr is defined by the Li filtration.
- In the RHS, $J_{\infty}S_{f_i}$ = the arc space of S_{f_i}
- If the conjecture is true, the claim holds.
- The conjecture is true for hook-types f₁, f₂ in sl_n.

Theorem (G.-Juillard, in progress)

Assume that (f_1, h_1) and (f_2, h_2) satisfy the step conditions and Conjecture. Then

$$W^k(\mathfrak{g}, f_2) \simeq H^0_{f_0}(W^k(\mathfrak{g}, f_1)).$$