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Almost by design, DAHA serve refined theories (with q, t, a),

toroidal and elliptic algebras. The passage to Kac-Moody algebras

is generally for t → 0,∞ or via Verlinde algebras, which can be

nonsymmetric and non-semisimple in the DAHA theory. The usual

ones are for t = q, qN = 1 and upon the symmetrization. Examples

of nonsymmetric applications of DAHA: level-1 Demazure characters

and boundary-level Kac-Wakimoto representations. We will mostly

focus on refined Rogers-Ramanujan series; they are governed by 2d

TQFT with levels. They satisfy the superduality, a recent theorem,

and can be viewed as invariants of some lens spaces.
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2 DAHA: basic theory

Let R = {α} ∈ Rn be a simple root system, (·, ·) the correspond-

ing inner product normalized by (αsht, αsht) = 2, {αi} simple
roots, W =〈si=sαi 〉=〈sα〉 the Weyl group, ρk=(1/2)

∑
α>0 kαα,

P = ⊕iZωi the weight lattice (for fundamental ωi), P+ = ⊕Z+ωi,

Q =
∑

α Zα,Q+ =
∑

α>0 Z+α. We set C[Xa] = C[X±1
ωi

], where

Xa+b = XaXb for a, b ∈ P , w(Xa)=Xw(a) for w ∈ W , C[X]W =

{F ∈ C[Xa], w(F )=F}, ⟨F ⟩ the constant term of Laurent series F ,
Xι

a = Xι(a), where ι(a) = −w0(a) for the longest element w0 ∈ W .

Let θu(X)
def
==

∑
a∈P u(a)q(a,a)/2Xa, θ = θtriv for characters

u : P/Q → C∗, playing the role of the classical theta- character-
istics (necessary in the level-rank duality for R of type A). Also:

θ
(ℓ)
u =θu1 · · · θuℓ for u = {u1, . . . , uℓ}, ℓ ≥ 0. We will focus on:

Littlewood-Richardson formulas. Given a system of orthogonal

polynomials {Pa, a ∈ P+} linearly generating C[X]W , the problem is

to calculate/interpret P̃aP̃b=
∑

c Ccu
ab P̃c for P̃a

def
==Paθ

(ℓ)
u , a, b∈P+.
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DAHA: TWO APPROACHES
For E = T 2, we set HH = CBell/{T 2

i +aTi+b = 0} for

Bell =π1(
(
En \ {x |

∏
α xα = 0}

)
/W ); Ti(1≤ i<n) are the

usual ”half-turns” for any irreducible reduced root system

R ∈ Rn; the orbifold π1 is used. In this approach, the action

of the projective PSL2(Z) (= B3 due to Steinberg) in HH is

granted, which is far from obvious via KT×C∗(Ĝ/B), the 2nd

major general approach. Algebraically, DAHA is a universal

flat deformation of the Heisenberg-Weyl algebra extended by

W . Its Fock representation is the polynomial representation

X . The eigenfunctions of ”Y-operators” are nonsymmetric

Macdonald polynomials. The symmetric polynomials are ob-

tained upon the t-symmetrization. The limit t → 0 results in

nil-DAHA and generalized Hermite polynomials.
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A1-DAHA, PROJECTIVE PSL2(Z)-ACTION

For A1, HH
def
== ⟨T,X±1, Y ±1, t±

1
2 , q±

1
4 ⟩

subject to relations: TXTX=1=TY −1TY −1,

Y −1X−1Y XT 2=q−1/2, (T−t
1
2 )(T+t−

1
2 )=0;

˜PSL2(Z)3τ±, τ+ :Y 7→q−
1
4XY,X 7→X,T 7→T.

For t=1: HH = (Weyl algebra)oS2 setting T → s.

HH ⟳⟳ X = C[X±1] : T 7→ t1/2s+
t1/2−t−1/2

X2−1
(s−1),

X 7→ X, Y 7→ πT, π = sp, s(X) = X−1, p(X) = q1/2X.

For GLn, τ+(Y1)=q−1/2X1Y1, τ−(X1)=q+1/2Y1X1,

Y1=πTn−1 . . . T1, π : X1 7→X2, . . . , Xn 7→q−1X1, . . .
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REFINED VERLINDE ALGEBRAS
Let q = exp( 2πi

N
), k <N/2, k ∈ Z+

2
. The map X(z) = qz

can be extended to an HH-homomorphism C[X±1] → V
def
==

Funct{−N+k+1
2

, ...,− k+1
2

,− k
2
, k+1

2
, ..., N−k

2
}. This is Non-

symmetric Verlinde Algebra. Generally, they are perfect rep-
resentations, which are canonical irreducible finite-dimensional
quotients of the polynomial representation X of HH if they ex-
ist (at roots of unity q or if t = qk for some fractional k).

In V above, X,Y, T are unitary in V for the ”minimal” pri-

mitive N th root q. Also, PSL2(Z) acts in V projectively and

in the image Vsym={f ∈ V |Tf= t
1
2 f} of C[X±1]sym, which,

generally, follows from their rigidity. This is a far-reaching

generalization (nonsymmetric and, possibly, non-semisimple)

of the action of PSL2(Z) on the Kac-Moody characters.
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QUANTUM GROUPS AT ROOTS OF UNITY
Thus, dimC V = 2N−4k, dimC Vsym = N−2k+1. Usual

Verlinde algebra is Ver = V k=1
sym; τ+ becomes the T -operator,

σ = τ+τ
−1
− τ+ , which is generally DAHA Fourier transform ,

becomes the S-operator. Generally, the ”characters” in Ver-

linde algebras are replaced by eigenfunctions of Y and Y+Y −1

in V and Vsym, the images of the Macdonald polynomials.

Ver represents integral irreducible Kac-Moody modules of level

N−h+1 with fusion. Conjecturally, the spherical part of the whole

polynomial representation when t = q (equal parameters) and q is a

root of unity is Repq of Lusztig’s quantum group; Ver =reduced cat-

egory. Also, its quotient by the canonical central character, describes

Repq of of small quantum group. Then PSL2(Z) acts in irreducible

(spherical) DAHA constituents, but NOT in the whole Repq .
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ROGERS-RAMANUJAN SERIES

Let c+ be such that c+∈W (c)∩P+. Given b∈P+, let b 6=c+∈b−Q+,

Pb−
∑

a∈W (b)Xa∈⊕cCXc, 〈PbXcιµ(X; q, t) 〉=0 for such c, where

µ(X; q, t)
def
==

∏
α∈R+

∏∞
j=0

(1−Xαqjα)(1−X−1
α qj+1

α )

(1−Xαtαq
j
α)(1−X−1

α tαq
j+1
α )

, considered

a Laurent series of Xb (expanded in terms of positive powers of q),

qα = qνα , να =
(α,α)

2
, tα = tνα ; the coefficients of Pb belong to

the field Q(q, tν). Setting tα = qkα
α , kα = kνα , Xa(qb) = q(a,b),

Pb(q
ρk )=q−(ρk,b)

∏
α>0

∏(α∨,b)−1
j=0

(
1−qjαtαXα(qρk )

1−q
j
αXα(qρk )

)
, 〈PbP

ι
cµ〉=

〈µ〉 δbc
∏

α>0

∏(α∨,b)−1
j=0

(1−qj+1
α t−1

α Xα(qρk ))(1−qjαtαXα(qρk ))

(1−q
j
αXα(qρk ))(1−q

j+1
α Xα(qρk ))

.

For any b, c ∈ P+, u = (u1, . . . , uℓ), and Ccu
ab for θ

(ℓ)
u above:

Ccu
0b

def
==

⟨PbP
ι
cθu µ⟩

⟨PcP ι
cµ⟩ = qb

2/2+c2/2+(b+c,ρk)

u(b−c)⟨PcP ι
cµ⟩

P ι
b (q

c+ρk )Pc(qρk )〈θµ〉,
Ccu
0b =

∑
c1,c2,...,cℓ−1∈P+

Cc1u1
0b Cc2u2

0c1
Cc3u3
0c2

· · ·Ccuℓ
0cℓ−1

. (R-R)
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STABILIZATION AND SUPERDUALITY

The series for C0u
00 are refined Rogers-Ramanujan sums ; they be-

come modular 0-weight functions as t → 0 [Ch,B.Feigin,2013]. For

b=(bi, 1≤ i≤m)⊂P+ 3 c, we set: Pb
def
==

∏
i Pbi , Ccu

b =

〈PbP
ι
cθuµ〉

〈PcP ι
cµ〉

=
〈PbPcιθµ〉

u(Σibi − c) 〈PcP ι
cµ〉

=
τ̇−1
− (PbPcι )(qρk )〈θµ〉
u(

∑
i bi − c) 〈PcP ι

cµ〉
,

where τ̇−(Pb) = q−(b,b)/2−(b,ρk)Pb for b ∈ P+ is the action of τ−
in the polynomial representation. The extension to any ℓ is as above.

THM. For An and u = 1, there exists a unique series C(q, t, a)

such that C0
00/〈θµ〉 = C(q, t, a = −tn+1) (stabilization). Then

C(q, t, a) = C(t−1, q−1, a) (superduality)

Here τ̇−1
− (PbPcι )(qρk )/Pc(qρk ) is the DAHA-Jones ”polynomial”

from [Ch,Danilenko,2015] for Hopf (m+1)-link with the pairwise linking

numbers −1 for colors b and +1 between b and c.
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ASSOCIATIVITY VIA TQFT
Following TQFT (the unoriented one due to Turaev-Tuner with

ι), the relations between Ccu
b can be interpreted as follows. Let A be

a commutative algebra with 1 and a symmetric non-degenerate form
〈f, g〉= 〈fgιµ1〉 for ϵ : A 3 f 7→ 〈fµ1〉, µι

1 = µ1, 1ι = 1, ϵ(1) = 1.

Define ∆ : A →A ⊗̂A via 〈∆(f), x ⊗ y〉= 〈f, xy〉. In the basis of
orthogonal polynomials/functions {Pa ∈ A } under P0=1, 〈1, 1〉=1:

∆(PaV ) =
∑

b,c
⟨PaV,PbPc⟩Pb⊗Pc
⟨Pb,Pb⟩⟨Pc,Pc⟩

for any ι-invariant function V .

The invariant of S2 is then 〈V µ1〉. Taking V = θ
(ℓ)
u , Pa(a ∈ P+)

etc., as above, it is 〈θ(ℓ)u µ〉/〈µ〉. The corresponding invariant for

the torus T 2 is
∑

b∈P+

⟨θ(ℓ)u ,PbPb⟩
⟨Pb,Pb⟩

. For A1, θ
(ℓ)
u = θ as t→ 0, it is

proportional to 1+
∑

m≥1
1

(1−q)···(1−qm)
, which diverges as |q| < 1.

One can use here some renormalization (and analytic continuation),
roots of unity q, ... or proper V . There are no convergence problems

though for θ
(ℓ)
u (ℓ ≥ 0) if no ”cycles” are allowed (the next page)!
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NIL-THEORY: THE LIMIT t → 0
The usual Rogers-Ramanujan sums occur as t→0 (tν →0, to be

exact). The µ-function and P -polynomials are well-defined at t=0;

we put then µ̄, P̄b, C̄···
···. Using limt→0 q(b,ρk)P ι

b (q
c+ρk ) = q−(b,c),

one obtains: C̄cu
0b

def
==

⟨P̄bP̄
ι
cθu µ̄⟩

⟨P̄cP̄
ι
c µ̄⟩

= q(b−c)2/2

u(b−c)
∏n

i=1

∏(c,α∨
i

)

j=1 (1−q
j
i )

,

C̄cu
0b =

∑
c1,c2,...,cℓ−1∈P+

C̄c1u1
0b C̄c2u2

0c1
C̄c3u3
0c2

· · · C̄cuℓ
0,cℓ−1

(R-R)

=
∑

c1,c2,...,cℓ−1

q
(c0−c1)2/2+(c1−c2)2/2+...+(cℓ−1−cℓ)

2/2∏ℓ
p=1 up(cp−1−cp)

∏n
i=1

∏(cp,α∨
i

)

j=1 (1−q
j
i )

, where

ci ∈ P+, qi=qαi , α
∨
i =2αi/(αi, αi), and we set c0=b, cℓ=c ∈ P+.

Here q-Hermite polynomials P̄b coincide with dominant Demazure

level-one characters (Sanders, Ion). Upon the division by their norms,

they coincide with the characters of some natural quotients of the up-

per level-one Demazure modules and those of global Weyl modules.
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RELATION TO STRING FUNCTIONS
Let us discuss briefly the connections with string functions. Here

θ̂v(X)
def
==

∑
a∈v+Q q

(a,a)
2 Xa for v ∈ P/Q are more convenient.

Then the corresponding 〈P̄bP̄
ι
c θ̂vµ̄〉/〈P̄cP̄ ι

c µ̄〉 for c0=b, cℓ=c are

Ĉv
b,c =

∑
c1,c2,...,cℓ−1∈P+

q
(c0−c1)2/2+...+(cℓ−1−cℓ)

2/2∏ℓ
p=1

∏n
i=1

∏(cp,α∨
i

)

j=1 (1−q
j
i )

, where v =

{v1, . . . , vℓ} ⊂ P/Q and the summation is over ci − ci+1 ∈ vi +Q.
They are zero unless b−c+v1+. . .+vℓ ∈ Q. When b = 0, they are mod-

ular weight-zero functions for minuscule c , w.r.t. some congruence

subgroups of SL(2,Z) and up to q•. Let η = q
1
24

∏∞
i=1(1− qi).

First, q−
1
4 Ĉ111

0,1 =
∏∞

j=1(1+qj)2
∑∞

m=0
q2m

2∏m
j=1(1−q2j)

for A1 and

ℓ = 3 ;
∑∞

m=0 is the Rogers-Ramanujan ”G” after q2 7→ q. Upon
q•

η2×, Ĉ000
0,0 , Ĉ110

0,0 , Ĉ100
0,1 , Ĉ111

0,1 coincide with the basic string functions

for ŝl3 of level 2: C2ω̂0
0 , C2ω̂0

α1+α2
, Cω̂0+ω̂1

ω1 , Cω̂0+ω̂1
ω1+α2

[Georgiev,1995].
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LEVEL-RANK DUALITY
Here λ̂ = λ + δ for λ ∈ P+, ω0 = 0, and string functions for

affine dominant Λ of level ℓ are the coefficients of the decomposition
of the character of the integrable Kac-Moody module LΛ in terms of

the standard affine orbit sums ϑℓ
ν ; namely, χ(LΛ) =

∑
ν CΛ

ν ϑℓ
ν .

The calculations are quite involved here (based on parafermions).
Thus we arrived at the level-rank duality (I.Frenkel and others) for cer-

tain string functions. Surprisingly, this duality is simple to observe in

terms of the sums Ĉ. The quadratic q-powers here are given in terms

of the (inverse) Cartan matrix for the root system R⊗Aℓ−1. So for
R = An−1, a straightforward analysis shows that they satisfy n ↔ ℓ.

At the level of sets v: the ℓ-sets of the element from P/Q = Zn

for An−1 are naturally identified with n-sets of the elements from
P/Q = Zℓ for Aℓ−1. Note that counting classes of integrable mod-

ules, you have essentially
(n+ℓ−1

n−1

)
/n =

(n+ℓ−1
ℓ−1

)
/ℓ, but the duality

for the corresponding string functions is generally much more subtle.
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NONSYMMETRIC THEORY
Following [Ch, Kato, 2018], we outline the identification of the non-

symmetric global Weyl modules [E.Feigin, Kato, Khoroshkin, Macedon-

skiy,...)] with the Demazure slices of the upper Demazure filtration

in the (basic) level-one module L. The upper Demazure modules are

with respect to b̂− in contrast to the Borel subalgebra b̂+, resulting

in the usual level-one Demazure modules Db, b ∈ P . The charac-
ters of the latter coincide with non-symmetric q-Hermite polynomials

Ēb = Eb(t → 0) (Sanderson, Ion), where Eb are nonsymmetric Mac-

donald polynomials for b ∈ P . They are orthogonal for the same µ,
but now form a basis in the whole C[Xb]. The characters of Demazure

slices are identified with E†
b = Eb(t → ∞), divided by their norms

h0
b , which can be defined as the limits t → 0 of the norms of Eb. The

dag-polynomials are significantly more subtle than Ēb, though P †
b are

closely related to P̄b (for b ∈ P+). Let us relate the decomposition

of L⊗ℓ via the Demazure slices to R-R sums.
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DEMAZURE SLICES
The first part is entirely numerical (based on the DAHA theory).

Let θ̂
def
== θ

⟨µ̄⟩
⟨θµ̄⟩ , µ̄ = µ(t → 0) (actually, 〈θµ̄〉 = 1); then θ̂ can

be identified with the graded character of the level-one (basic) inte-

grable representation L of the twisted affinization ĝ of the simple

Lie algebra g corresponding to the root system R.

For ℓ ∈ N, b ∈ P and c = {ci ∈ P, 1 ≤ i ≤ ℓ}, Ēbι θ̂
ℓ =∑

c Cc
q((b+−(c1)+)2+...+((cℓ−1)+−(cℓ)+)2)/ 2∏ℓ−1

i=1 h0
ci

E†∗
cℓ

h0
cℓ

, whereCc is some

(non-trivial) power of q, E†∗
c is E†

c where Xa → X−1
a , q → q−1.

Its Kac-Moody interpretation is essentially as follows. For a level

one usual Demazure module Db associated to b ∈ P and its dual D∨
b ,

the module D∨
b ⊗L⊗ℓ admits a filtration by the Demazure slices (as

constituents). Its multiplicities are provided by the formula above.
This can be (and was) generalized in various directions.


