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Almost by design, DAHA serve refined theories (with q,¢,a),
toroidal and elliptic algebras. The passage to Kac-Moody algebras
is generally for ¢ — 0,00 or via Verlinde algebras, which can be
nonsymmetric and non-semisimple in the DAHA theory. The usual

N — 1 and upon the symmetrization. Examples

ones are for t = q, q
of nonsymmetric applications of DAHA: level-1 Demazure characters
and boundary-level Kac-Wakimoto representations. We will mostly
focus on refined Rogers-Ramanujan series; they are governed by 2d
TQFT with levels. They satisfy the superduality, a recent theorem,

and can be viewed as invariants of some lens spaces.



2 DAHA: basic theory

Let R = {a} € R" be a simple root system, (-, -) the correspond-
ing inner product normalized by (cshi, ashe) = 2, {a;} simple
roots, W =(s; =sa,) = (sa) the Weyl group, pr, =(1/2) > <o kaa,
P = ®;Zw; the weight lattice (for fundamental w;), P+ = ®Ztw;,
Q=> 0%0,Qy =>  ~oZia. Weset C[X,] = C[X fl], where
Xatp = XXy for a,b € Py w(Xa)=Xyy(q) for w e W, CIX|W =
{F € C[X,4],w(F)=F}, (F) the constant term of Laurent series F',
X4 = X,(a), Where .(a) = —wq(a) for the longest element wo € W.

Let 6, (X) def Zaepu(a)q<a’a)/2XG,0 = 0triy for characters

u : P/Q — C*, playing the role of the classical theta- character-

istics (necessary in the level-rank duality for R of type A). Also:

9(6) Ouqy - Oy, for u={u1,...,ur}, £ > 0. We will focus on:
Littlewood-Richardson formulas. Given a system of orthogonal

polynomials { P,,a € Py} linearly generating C[X]", the problem is

to calculate/interpret Po P, = > e CcuP for P d—efP 91(16), a,be Py.
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For E = T2, we set 7 = CBe”/{Tf—I—aTZ-—I—b: 0} for
Boi=m((E" \ {z | [, za = 0})/W); Ti(1 <i<n) are the
usual ”half-turns” for any irreducible reduced root system
R € R™; the orbifold 7, is used. In this approach, the action
of the projective PSL2(Z) (= Bs due to Steinberg) in 7H is
granted, which is far from obvious via K7y~ (CT/E ), the 2nd
major general approach. Algebraically, DAHA is a universal
flat deformation of the Heisenberg-Weyl algebra extended by
W . Its Fock representation is the polynomial representation
X. The eigenfunctions of ”Y-operators” are nonsymmetric
Macdonald polynomials. The symmetric polynomials are ob-
tained upon the t-symmetrization. The limit ¢ — O results in
nil-DAHA and generalized Hermite polynomials.



DAHA: basic theory

For Ay, 7 S8 (T, X8, VH +3 ¢t4)

subject to relations: TXTX =1=TY 'TY ',
Y IXTWWXT? =¢ V2, (T—t2) (T4t 2)=0;

e~

PSLo(Z)>7s, Y q i XY, X+ X, T T.

For t=1: #{ = (Weyl algebra) XS, setting 7" — s.
[1/2 _4—1/2
FH O X =C[XH]: 714 (51,

XX, Yoal,m=sp, s(X)=X"", p(X)=q"?X.

For GL,, 7+ (Y1)=q Y2X1Y1, 7_(X1)=¢"/?Y1 X1,
Y1:7TTn_1 ...Tl, VI X1|—>X2,...,an—>q 1X1,
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Let ¢ —exp<2m) k<N/2k € Z-. The map X(z) = ¢°

can be extended to an 7H- homomorphlsm ClX il] Sy &
Funct{—%, - %, —g, %, ey N;k} This is Non-

symmetric Verlinde Algebra. Generally, they are perfect rep-
resentations, which are canonical irreducible finite-dimensional
quotients of the polynomial representation X of 7 if they ex-
ist (at roots of unity ¢ or if t = ¢* for some fractional k).

In V above, X, Y, T are unitary in V' for the ”minimal” pri-
mitive Nth root q. Also, PSL2(Z) acts in V projectively and
in the image Vym ={f € V|Tf=1t2 f} of C[X*"]5ym, which,
generally, follows from their rigidity. This is a far-reaching
generalization (nonsymmetric and, possibly, non-semisimple)
of the action of PSL2(Z) on the Kac-Moody characters.



6 Verlinde algebras

Thus, dimc V = 2N —4k, dimc Vsym = N —2k+41. Usual
Verlinde algebra is Ver = Vsk;?l%; T+ becomes the T-operator,
o = 747~ ‘74 , which is generally DAHA Fourier transform,
becomes the S-operator. Generally, the ”characters” in Ver-
linde algebras are replaced by eigenfunctions of Y and Y +Y ~*
in V and Vi, the images of the Macdonald polynomials.

Ver represents integral irreducible Kac-Moody modules of level
N —h—+1 with fusion. Conjecturally, the spherical part of the whole
polynomial representation when ¢ = ¢ (equal parameters) and ¢ is a
root of unity is Rep, of Lusztig’s quantum group; Ver =reduced cat-
egory. Also, its quotient by the canonical central character, describes
Repq of of small quantum group. Then PSL2(Z) acts in irreducible
(spherical) DAHA constituents, but NOT in the whole Rep,.
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Let c4+ be such that c; €W (c)NP+. Given be Py, let b#c, €b—Q 4,
Pb—ZaEW(b)Xa € D.CXe, ( Py Xceu(X;q,t))=0 for such ¢, where
def o _ (1-Xaal)(-X5 q”l) :
.U(X q,t) HaeR+ HJ —0 (1—X o, taqa)(l—X g+1) , considered
a Laurent series of X; (expanded in terms of p051tive powers of q),
(o, )
t
2 A

o = q"%, Vo = = t,,,; the coefficients of P, belong to

the field Q(q,t,). Setting t, = ghe, ke = kv, Xa(qP) = ql@b),
—(pk,b) (o b) 1 1_qjt0c Xa(gPk) Ly, —
Py(qP*)=q~ &2 [0 [T5= ( o X (2PF) >,<PP p) =
(a b)—1 (11— q3+1t ' Xa(g7F))(1—g) ta Xa(q?k))
(1) Ove [laso I1;2 (1-¢4 Xa(¢7k))(1—ah T Xa (aPk))

For any b,c € Py, u = (u1,...,ug), and CS} for 01(16) above:
def (PP 0, p) _ ob°/2+c?/2+(bte.py,)
Coy = “mrr = Tamamrrn (@) Pe(a”%) (0),

cu_ Ciul ~C2u2 ~cgug = mCuy _
C ch 9C29.. C£_1€P_|_ COb COC]_ C062 (COce_l ° (R R)
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The series for Cg(‘)‘ are refined Rogers-Ramanujan sums ; they be-
come modular O-weight functions as t — 0 [Ch,B.Feigin,2013]. For

b=(b;,1<i<m)C Py 3 c, we set: P dzef]_[i P, , Cit=
(P P00 1) (PoPobu) 72 (PoPe)(g”%){(0p)

(PePipy  w(Sibi — ) (PePip)  u(>2; by — ) (PePip)’

where 7_ (P,) = ¢~ (0:0)/2=(b:pk) P for b € Py is the action of 7_
in the polynomial representation. The extension to any ¢ is as above.
THM. For A, and u = 1, there exists a unique series €(q,t,a)
such that C9,/(6p) = €(q,t,a = —t"T1) (stabilization). Then
¢(q,t,a) = €(t~1,q7 1, a) (superduality)
Here 7~ ' (Pp P..)(qP*)/P.(qP*) is the DAHA-Jones ”polynomial”
from [Ch, Danilenko,2015] for Hopf (m~+1)-link with the pairwise linking

numbers —1 for colors b and +1 between b and c.
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Following TQF'T (the unoriented one due to Turaev-Tuner with
L), the relations between C{" can be interpreted as follows. Let </ be
a commutative algebra with 1 and a symmetric non-degenerate form

(fr9) =({fg'm) for € : &5 f = (fu1), py =p1, 1" =1,¢(1) = 1.
Define A : & — /R via (A(f),x ® y) = (f, zy). In the basis of
orthogonal polynomials/functions {P, € </} under Pp=1,(1,1)=1:

A(PaV) =3 . <P<C}3Z’]€Z§D<C}Pbp®>lg ¢ for any t-invariant function V.

The invariant of S? is then (V7). Taking V = 9516), Py(a € Py)

etc., as above, it is <01(f) 1) /{u). The corresponding invariant for
(£)

the torus 72 is ZbeP+ Ou s PoB) - pop Al,Hl(f): 0 as t — 0, it is

(Py,Py)
proportional to 1+ _1(1_qm), which diverges as |g| < 1.

One can use here some renormalization (and analytic continuation),
roots of unity ¢, ... or proper V. There are no convergence problems

though for 9&6) (¢ > 0) if no ”cycles” are allowed (the next page)!



10 Topological vertex

Generators, relations and some amplitudes:

/
l — —
la L l l
<PgPpPi9*'n> <P PpPcO'u>
where P, = 1, =>ebc Pm _Za bl b2 A
p <PgPgpn> <PgPgsu>
b ¢ b c

<Pp Pj u><P; P p>

P, PipLo!
Paﬁl_)z{b,c} pr R P., Ri?z <Pq PpPcvp><p>
a a
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The usual Rogers-Ramanujan sums occur as t —0 (¢, — 0, to be
exact). The yu-function and P-polynomials are well-defined at ¢ = 0;
we put then i, Py, C:::. Using lim;_,q q(b’pk)PbL(qc+pk) = q—(b0),

. ey def (P, PO, [ (b—e)?/2
one obtains: Cgy def b c’u ) d ,
<PCPL/7,> b—c n (C’a’i ) 1— J
¢ u( )H»L':l Hj:l ( qi)
~eu ~ClUL (NC2UZ NC3UZ | NCUY )
COb _ZC1,C2,...,C£_1 cPy COb COCl <COCQ CO,Cg_l (R R)

q(co—01)2/2+(01—02)2/2+---+(%—1—C£)2/2

— where
261702,---,63—1 (cp,a ’

T8y wp(ep1—ep) T2y TLT ™) (1—a)
¢i € Py,qi=qa;,a; =2a;/(ay,a;), and we set co=b,cp=c € Py.

Here g-Hermite polynomials P, coincide with dominant Demazure
level-one characters (Sanders, Ion). Upon the division by their norms,
they coincide with the characters of some natural quotients of the up-

per level-one Demazure modules and those of global Weyl modules.



12 Kac-Moody case

Let us discuss briefly the connections with string functions. Here

—~ (a,a)
0, (X) def Dacviqd 2 Xa for v € P/Q are more convenient.

Then the corresponding (P, P’ O i) /{P.Pt i) for co=b,cp=c are
q(co—cl)2/2—|—...+(ce_1—ce)2/2

/\V . B

Cb,c _261,62,...,C£_1EP+ P N (Cp’a;/) P ,Wherev =
szl 17— Hj:l (1—q;)

{vi,...,v¢} C P/Q and the summation is over ¢; — ¢;11 € v; + Q.

They are zero unless b—ctvi+. . 4vy € Q. When b = 0, they are mod-
ular weight-zero functions for minuscule c, w.r.t. some congruence

subgroups of SL(2,7Z) and up to q°®. Let n = qi [152,(1 —gY).
. 1~ . 2m2
First, ¢~ 4 @(1)’111 :1_[‘(7?11(14—(]3)2 Yoo H?fl(l—q%) for A; and
¢=3; > > is the Rogers-Ramanujan ”G” after q°> — g. Upon

[ ] ~ ~ ~ ~
q 000 75110 {3100 111 .oined . . . )
7250 (C(),O 7<Co,0 7(C0,1 ,Co’l coincide with the basic string functions

N . 200 200 Wotw1 wWotHo1 .
for si3 of level 2: CO , Cal—l-a2 , Cwl , Cwl—l—ozg [Georgzev,1995].
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Here A = A\ + 6§ for \ € Py, wg = 0, and string functions for
affine dominant A of level ¢ are the coefficients of the decomposition
of the character of the integrable Kac-Moody module L, in terms of
the standard affine orbit sums ¥%; namely, x(Lp) = > CA0%.

The calculations are quite involved here (based on parafermions).
Thus we arrived at the level-rank duality (I.Frenkel and others) for cer-
tain string functions. Surprisingly, this duality is simple to observe in
terms of the sums C. The quadratic g-powers here are given in terms
of the (inverse) Cartan matrix for the root system R ® A, 1. So for
R = A,,_1, a straightforward analysis shows that they satisfy n < /.
At the level of sets v: the /-sets of the element from P/Q = Z,
for A,,_1 are naturally identified with n-sets of the elements from
P/Q = Zy for Ay_,. Note that counting classes of integrable mod-

ules, you have essentially (n+£ 1) /n = (TH'E 1) /£, but the duality
for the corresponding string functions is generally much more subtle.
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Following [Ch, Kato, 2018], we outline the identification of the non-
Symmetric global Weyl modules [E'.Fez'gz’n, Kato, Khoroshkin, Macedon-
skiy,...)] with the Demazure slices of the upper Demazure filtration
in the (basic) level-one module L. The upper Demazure modules are
with respect to b_ in contrast to the Borel subalgebra /b\+, resulting
in the usual level-one Demazure modules D;, b € P. The charac-
ters of the latter coincide with non-symmetric g-Hermite polynomials
Ey, = Ey(t — 0) (Sanderson, Ion), where Ej, are nonsymmetric Mac-
donald polynomials for b € P. They are orthogonal for the same p,
but now form a basis in the whole C[X]. The characters of Demazure

slices are identified with Eg = FEu(t — o), divided by their norms
hg, which can be defined as the limits ¢ — O of the norms of E}. The

dag-polynomials are significantly more subtle than £}, though PbT are
closely related to P, (for b € P.). Let us relate the decomposition
of L®¢ via the Demazure slices to R-R sums.
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The first part is entirely numerical (based on the DAHA theory).

Let § 2 9<<0“>>, g = u(t — 0) (actually, (§z) = 1); then 0 can
be identified with the graded character of the level-one (basic) inte-
grable representation I of the twisted affinization g of the simple
Lie algebra g corresponding to the root system R.

For / € NNb € Pand ¢c = {¢; € P, 1 < i < /}, EbL§£ =
e (O =D+ H (e (o p?) 2 B

[Ti=7 R, h"
(non-trivial) power of g, E;r* is EZ where X, — X 1. g = g
Its Kac-Moody interpretation is essentially as follows. For a level
one usual Demazure module D, associated to b € P and its dual Dg/ ,
the module D) ® L®% admits a filtration by the Demazure slices (as
constituents). Its multiplicities are provided by the formula above.
This can be (and was) generalized in various directions.

, where C¢ is some

1



