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Background

A formal star product on a Poisson manifold M is a formal
associative deformation of the algebra of smooth functions
C∞(M).
The existence and classification of star products has been widely
studied.

Symplectic case: [De Wilde-Lecomte]; [Fedosov]; ...,

Poisson case: [Kontsevich]; [Cattaneo-Felder]; ... .
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Background

Drinfel’d showed that the quantization problem for the triangular
Lie bialgebras is equivalent to constructing a universal deformation
formula [Drinfel’d].

This provides an approach to construct special star products:
Suppose that M is a manifold with an action of a Lie algebra g,
and

F ∈ U(g)⊗ U(g)!!"
is a Drinfel’d twist, i.e., F satisfies

(∆⊗ id)F · F12 = (id⊗∆)F · F23 ;
(ε⊗ id)F = (id⊗ ε)F = 1 ;

F = 1⊗ 1 + O(!) .

Write F = F1 ⊗ F2 ,F1 ,F2 ∈ U(g) (Sweedler’s notation). Then

f " g := F (f , g) = (F1 ⊲ f ) · (F2 ⊲ g) , ∀f , g ∈ C∞(M)!!" ,

defines a star product on C∞(M)!!".
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Background

An iterative procedure to write down an explicit universal
deformation formula starting from classical triangular r -matrices is
given in the work [Dolgushev-Isaev-Lyakhovich-Sharapov].

This approach extends the Fedosov approach and has the
advantage of not choosing auxiliary symplectic connections, it
provides star products for a broad class of manifolds with irregular
Poisson brackets.

In this talk, we will extend the method of
[Dolgushev-Isaev-Lyakhovich-Sharapov] to the case of classical
triangular dynamical r -matrices.
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Background

Xu introduced the quantum dynamical Yang–Baxter equation
(QDYBE), or generalized Gervais–Neveu–Felder equation, over a
nonabelian base h∗.

Let g be a Lie algebra and h ⊂ g be a not necessarily abelian Lie
subalgebra.

Let {hi} be a vector basis of h, {λi} be the corresponded linear
coordinates on h∗, and {ξi ∈ h∗} be the dual basis.
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Background

Let
R : h∗ → U(g)⊗ U(g)!!"

be a h-equivariant map, i.e., the following zero weight condition is
satisfied

(LAd∗hi
R)(λ) + [hi ⊗ 1 + 1⊗ hi ,R(λ)] = 0 , ∀hi ∈ h ,λ ∈ h .

We treat R as an element in U(g)⊗ U(g)⊗ C∞(h∗)!!".
The space C∞(h∗)!!" is endowed with the PBW product "PBW,
induced by the PBW isomorphism S(h) ≃ U(h).

The non-abelian QDYBE has the following form:

R12(λ) "PBW R13(λ+ !h(2)) "PBW R23(λ)

= R23(λ+ !h(1)) "PBW R13(λ) "PBW R12(λ+ !h(3))
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Background

The classical limit of the quantum dynamical R-matrix is the
classical dynamical r -matrix,

r : h∗ → g⊗ g ,

r(λ) := lim
!→0

1

!
(R(λ)− 1⊗ 1) ,

satisfies the h-equivariant condition

(LAd∗hi
r)(λ) + [hi ⊗ 1 + 1⊗ hi , r(λ)] = 0

and the non-abelian classical dynamical Yang-Baxter
equation(CDYBE)

!

i

hi
∂

∂λi
r + [r , r ] = 0 .



Background

Suppose that
F : h∗ → U(g)⊗ U(g)!!"

is a h-equivariant map and satisfies the nonabelian dynamical twist
equation:

(∆⊗ id)F (λ) "PBW F12(λ+ !h(3)) = (1⊗∆)F (λ) "PBW F23(λ)

(ε⊗ id)F (λ) = (id⊗ ε)F (λ) = 1 ;

F (λ) = 1⊗ 1 + O(!) .

Then
R(λ) := F−1

21 (λ) "PBW F (λ)

is a solution of the non-abelian QDYBE.

The deformation formula of quantum dynamical Yang-Baxter equations over a non-abelian base Jiahao Cheng 8 / 27



Background

Let G be a Lie group of g.

Theorem (Xu)

A map r : h∗ → g∧g satisfies the (non-abelian) CDYBE if and only

πr := πh∗ +
!

i

∂

∂λi
∧

→
hi +

−−→
r(λ)

is a Poisson structure on h∗ × G.
Here πh∗ =

"
cki ,jλ

k ∂
∂λi

∧ ∂
∂λj

is the Lie-Poisson structure on h∗,

cki ,j are the structure constants of h.

We call r(λ) a (non-abelian) symplectic triangular dynamical
r -matrix, if πr comes from a symplectic structure on h∗ × G .
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Background

Theorem (Xu)

Any abelian (i.e., h is abelian) symplectic or splittable triangular
dynamical r -matrix is quantizable.

Theorem (Alekseev-Calaque)

Any non-abelian symplectic triangular dynamical r -matrix is
quantizable.

Both Xu and Alekseev-Calaque adopted Fedosov approach to
construct quantizations.
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Background

Theorem (Xu)

A map F : h# → U(g)⊗ U(g)!!" satisfies the (non-abelian)
dynamical twist equation if and only if there is a star product " on
h∗ × G such that it satisfies the following conditions:

(1) g1(λ) " g2(λ) = g1(λ) "PBW g2(λ), ∀g1(λ) , g2(λ) ∈ C∞(h∗);

(2) f (x) " g(λ) = f (x) · g(λ), ∀f (x) ∈ C∞(G ) , g(λ) ∈ C∞(!∗);

(3) g(λ) " f (x) =
"

k
!k
k! (

∂k

∂λi1 ···λik
g) · (

→
hi1 · · ·

→
hikg),

∀f (x) ∈ C∞(G ) , g(λ) ∈ C∞(h∗);

(4) f1(x) " f2(x) =
−−→
F (λ)(f1 , f2), ∀f1(x) , f2(x) ∈ C∞(G ).

Such star product is called a compatible star product. If it exists, it
is completely determined by F in terms of an explicit formula (Xu).
We note that a compatible star product is not symmetric with
respect to variables λ ∈ h∗ and x ∈ G . Thus it can not be of Weyl
ordering.
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Questions

When h is abelian, consider the Lie algebroid

(Th∗ ⊕ g)h∗ :=

#
Th∗ ⊕ g → h∗

$

over the base manifold h∗. Here g acts trivially on h∗. In this
abelian case, Xu construct a twistor

F := F (λ) ·Θ ∈ U(Th∗ ⊕ g)h∗ ⊗C∞(h∗) U(Th∗ ⊕ g)h∗!!" ,

where

Θ = exp(!θ) , θ =
!

i

∂

∂λi
⊗ hi , hi ∈ h ⊂ g .

From this twistor F , Xu constructed the quantum groupoid
%
U(Th∗⊕g)h∗!!" , · ,∆F ,αF ,βF , ε

&
, ∆op

F (x) = R(λ)·∆(x)·R−1(λ)

which corresponds to the quantum dynamical R-matrix
R(λ) = F21(λ)

−1F (λ).
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Questions

Question 1:
When h is a non-abelian Lie subalgebra of g, and R(λ) is a
non-abelian quantum dynamical R-matrix, what is the quantum
groupoid (in the sense of Xu) corresponds to R(λ), what is the
twistor F for constructing this quantum groupoid?

Question 2:
Suppose that the Lie algebra g acts on a manifold M. What is the
universal deformation formula for the aforesaid quantum groupoid?
Suppose that R(λ) is a quantization of a symplectic triangular
dynamical r -matrix r(λ). Can we have an iterative procedure to
write down an explicit universal deformation formula starting from
r(λ), which generalizes the results of
[Dolgushev-Isaev-Lyakhovich-Sharapov]?

The deformation formula of quantum dynamical Yang-Baxter equations over a non-abelian base Jiahao Cheng 13 / 27



Quantum Groupoids

The field K = R or C. Let R be an associative algebra with unit.

Definition (following Xu’s Quantum Groupoid paper)

A quantum groupid (H , · ,∆ ,α ,β , ε) over R consists of the
following data with compatibility conditions:

(1) H is an associative algebra with unit 1.

(2) Two associative algebra morphisms, the source map
α : R → H and the target map β : Rop → H. Their images
commute.
The (R ,R)-bimodule structure on H:

r · h := α(r) · h , h · r ′ := β(r ′) · h , ∀r , r ′ ∈ R , h ∈ H .

(3) The coproduct ∆ : H → H⊗R H is a coassociative
(R ,R)-bimodule morphism, satisfies ∆(1) = 1⊗ 1, and

∆(h) · (β(r)⊗ 1− α(r)⊗ 1) = 0 , ∀h ∈ H, r ∈ R ,

∆(h1 · h2) = ∆(h1) ·∆(h2) , ∀h1 , h2 ∈ H .
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Quantum Groupoids

Definition (continuted)

(4) The counit map ε : H → R , a (R ,R)-bimodule morphism,
satisfies ε(1) = 1, (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id, and

Ker(ε) is a left H-ideal in H.

Example

Suppose that L → M is a Lie algebroid over M. Then the universal
enveloping algebra U(L) is a quantum groupoid over C∞(M), with
α = β : C∞(M) → U(L) the inclusion map.
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Twistors

Let (H , · ,∆ ,α ,β , ε) be a quantum groupoid over R .

Definition

An element F ∈ H⊗R H is called a twistor, if it satisfies the
following conditions:

(1) (∆⊗id)F ·F12 = (id⊗∆)F ·F23 , (ε⊗id)F = (id⊗ε)F = 1 .

(2) For all left H-modules M1 and M2, the maps

F $ : M1 ⊗RF M2 → M1 ⊗R M2

m1 ⊗RF m2 ,→ F · (m1 ⊗R m2)

are all isomorphisms.

In Condition (2) above, RF denotes a new associative algebra
structure on R whose multiplication is given by

r1 "F r2 := (F1 ⊲ r1) · (F2 ⊲ r2) , ∀r1 , r2 ∈ R .

Condition (1) guarantees that "F is an associative multiplication.
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Twistors

Theorem (Xu)

If F ∈ H⊗R H is a twistor, then we have a new quantum groupoid

HF =
%
H , · ,∆F ,αF ,βF , ε

&
,

over the deformed associative algebra RF = (R , "F ). The
multiplication · and counit ε of HF are unchanged, and

∆F (x) = (F $)−1(∆(X ) · F) , ∀x ∈ H;

αF (r) = (F1 ⊲ r)F2 , βF (r) = F1(F2 ⊲ r) ,

r1 "F r2 = (F1 ⊲ r1)(F2 ⊲ r2) , ∀r , r1 , r2 ∈ R .
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Quantum Groupoids for Non-abelian R-matrices

Suppose that h ⊂ g is a non-abelian Lie subalgebra.
In this case, h acts non-trivially on h∗ by the adjoint action.
Meanwhile, the abelian Lie algebra h∗ acts on the manifold h∗ by
derivations with constant coefficients:

ξi ∈ h∗ ,→ ∂

∂λi
∈ Γ(Th∗) .

The pair (h , h∗) is a Lie bialgebra, its Drinfel’d double is denoted
by D(h). The aforesaid two actions of h and h∗ on the manifold h∗

extends to a Lie algebra action of D(h) on h∗.

Let D(h)h∗ :=

#
D(h)× h∗ → h∗

$
be the action Lie algebroid of

D(h) over h∗.

We have the identification of the two Lie algebroids over h∗

D(h)h∗ = (Th∗ ⊕ h)h∗ .
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Quantum Groupoids for Non-abelian R-matrices

Let H be a Lie group of h.
The canonical classical r -matrix

!

i

ξi ∧ hi ∈ ∧2D(h)

induces the Poisson structure
!

i

∂

∂λi
∧ LAd∗hi

+
!

i

∂

∂λi
∧

→
hi = πh∗ +

!

i

∂

∂λi
∧

→
hi

on h∗ × H. It is known that this Poisson structure corresponds to
the canonical symplectic structure on the cotangent bundle

T ∗H ≃ h∗ × H .

In [Gutt], a compatible star product which quantizes the above
symplectic structure is given, thus we have the corresponded
twistor

'Θ ∈ U(Th∗ ⊕ h)h∗ ⊗C∞(h∗) U(Th∗ ⊕ h)h∗ .
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Quantum Groupoids for Non-abelian R-matrices

In the following, we will assume that g admits a reductive
decomposition:

g = h⊕m , [h ,m] ⊂ m .

We can extend the adjoint h-action on h∗ to an action of g on h∗,
by setting the action of m on h∗ to be zero.
Then we obtain a Lie algebroid

(Th∗ ⊕ g)h∗ :=

#
Th∗ ⊕ g → h∗

$

which contains the Lie subalgebroid (Th∗ ⊕ h)h∗ .
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Quantum Groupoids for Non-abelian R-matrices

Theorem

Suppose that g admits a reductive decomposition g = h⊕m (So
that (Th∗ ⊕ g)h∗ is defined). Let F : h∗ → U(g)⊗ U(g)!!" be a
map which has the form F (λ) = 1⊗ 1 + O(!). Then

'F := F (λ) · 'Θ ∈ U(Th∗ ⊕ g)h∗ ⊗C∞(h∗) U(Th∗ ⊕ g)h∗!!"

is a twistor of the quantum groupoid U(Th∗ ⊕ g)h∗!!" if and only
if F (λ) is a solution of the non-abelian dynamical twist equation.

The proof relies on the results of [Donin-Murdov] on twisting by
dynamical cocycles.
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Deformation Formula for Non-abelian R-matrices

Corollary

With the same assumption as above. Let M be a manifold with an
action of a Lie algebra ρ : g → TM. Then the universal
deformation formula

f (λ , x) " g(λ , x) := ((ρ⊗ ρ) 'F)(f , g) , f , g ∈ C∞(h∗ ×M) ,

for all f , g ∈ C∞(h∗ ×M), λ ∈ h∗, x ∈ M,
defines a star product on h∗ ×M which satisfies the following
properties:

(1) g1(λ) " g2(λ) = g1(λ) "PBW g2(λ), ∀g1(λ) , g2(λ) ∈ C∞(h∗);

(2) f (x) " g(λ) = f (x) · g(λ), ∀f (x) ∈ C∞(M) , g(λ) ∈ C∞(!∗);
(3) g(λ) " f (x) =

"
k

!k
k! (

∂k

∂λi1 ···λik
g) ·

%
ρ(hi1) · · · ρ(hik )g

&
,

∀f (x) ∈ C∞(M) , g(λ) ∈ C∞(h∗);

(4) f1(x) " f2(x) = (ρ⊗ ρ)
−−→

(F (λ))(f1 , f2), ∀f1(x) , f2(x) ∈ C∞(M).

The deformation formula of quantum dynamical Yang-Baxter equations over a non-abelian base Jiahao Cheng 22 / 27



Deformation Formula from Non-abelian r -matrices

In the following we will assume that r : h∗ → g ∧ g is a symplectic
triangular dynamical r -matrix. We know that r(λ) can be
quantized to a quantum dynamical twist
F (λ) : h∗ → U(g)⊗ U(g)!!".

Since πr := πh∗ +
"

i
∂
∂λi

∧
→
hi +

−−→
r(λ) ∈ Γ(∧2(Th∗ ⊕ g)h∗) is

non-degenerate, we obtain the symplectic from

ωr := π−1
r : ∧2(Th∗ ⊕ g)h∗ → K .

This 2-cocycle defines a Lie algebroid extension

0 → K! → L → (Th∗ ⊕ g)h∗,! → 0

over h∗. We use {yα} to denote the basis of fiber vectors of
(Th∗ ⊕ g)h∗ over h∗. Then the Lie bracket on Γ(L) has the form:

[yα , yβ]L = ![yα , yβ]Th∗⊕g + !ωr (yα , yβ) ,

[yα , f !]L = (yα · f )! , ∀yα ∈ Γ(Th∗ ⊕ g) , f ∈ C∞(h∗) .

Here yα · f means the action of yα on the function f ∈ C∞(h∗) by
the anchor map.
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Deformation Formula from Non-abelian r -matrices

Consider the universal enveloping algebra U(L) of L over C∞(h∗).
It is endowed with the natural associative multiplication, denoted
by ◦.
Let σ : U(L)⊗ C∞(M) → C∞(h∗ ×M)!!" be the projection map
which sends all homogeneous symmetric products of vectors yα (as
PBW basis) in U(L) to zero.

Let M be a smooth manifold with a Lie algebra g-action, so that
we have a morphism of Lie algebroid over h∗ ×M:

ρ : L = (Th∗ ⊕ g⊕K!)h∗ → T (h∗ ×M) .

Here the action of the trivial line bundle K! on h∗ ×M is zero.

Define an operator δ : U(L)⊗ C∞(M) → U(L)⊗ C∞(M):

δ(A) :=
!

α ,β

yβ(ωr )
−1
α ,β(ρ(yα)·A+[yα , A ]◦) , ∀A ∈ U(L)⊗C∞(M) .

Here [yα , · ]◦ is the commutator with respect the natural
associative multiplication ◦ on U(L).
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Deformation Formula from Non-abelian r -matrices

Theorem

With the same assumption as above. Then the map

F : h∗ → U(g)⊗ U(g)!!"

defined by the formula
%
(ρ⊗ ρ)F (λ)

&
(f , g) := σ

%
exp(!δ)f ◦ exp(!δ)g

&

for all f , g ∈ C∞(M), satisfies the (non-abelian) quantum
dynamical twist equation and its classical limit is the given
symplectic triangular dynamical r -matrix r(λ).

Here ρ : g → TM is the Lie algebra action,
exp(!δ)f , exp(!δ)g ∈ U(L), and exp(!δ)f ◦ exp(!δ)g is the
multiplication in U(L).

Thus we can further obtain the twistor 'F := F (λ) · 'Θ, and the
associated universal deformation formula.
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Deformation Formula from Non-abelian r -matrices

Remark:
For general f (λ , x) , g(λ , x) ∈ C∞(h# ×M), The formula

f "Weyl g := σ(exp(!δ)f ◦ exp(!δ)g)

defines a star product, but it is not a compatible star product.

Even though, we can construct the desired quantum dynamical
twist F (λ) by setting
%
(ρ⊗ ρ)F (λ)

&
(f , g) := σ

%
exp(!δ)f ◦ exp(!δ)g

&
, ∀f , g ∈ C∞(M) .

Then the desired compatible star product " is determined by
F (λ) =

"
fα,β(λ)Uα ⊗ Uβ , fα,β(λ) ∈ C∞(h∗) ,Uα ,Uβ ∈ U(g)!!",

in terms of Xu’s formula:

f (λ , x) " g(λ , x) =

! !k

k!
fα,β(λ) "PBW ρ(Uα)

∂k f

∂λi1 · · · ∂λik
"PBW ρ(Uβ)ρ(hi1) · · · ρ(hik )g ,

for λ ∈ h∗ , x ∈ M.
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End

Thanks for your attention.
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