The deformation formula of quantum dynamical Yang-Baxter equations over a non-abelian base

Jiahao Cheng Nanchang Hangkong University

Representation Theory, Integrable Systems and Related Topics BIMSA 11 July 2024

joint work with Zhuo Chen in Tsinghua University

The deformation formula of quantum dynamical Yang-Baxter equations over a non-abelian base $\,$ Jiahao Cheng 1/27

A formal star product on a Poisson manifold M is a formal associative deformation of the algebra of smooth functions $C^{\infty}(M)$.

The existence and classification of star products has been widely studied.

- Symplectic case: [De Wilde-Lecomte]; [Fedosov]; ...,
- Poisson case: [Kontsevich]; [Cattaneo-Felder];

Background

Drinfel'd showed that the quantization problem for the triangular Lie bialgebras is equivalent to constructing a universal deformation formula [Drinfel'd].

This provides an approach to construct special star products: Suppose that M is a manifold with an action of a Lie algebra \mathfrak{g} , and

 $F \in U(\mathfrak{g}) \otimes U(\mathfrak{g})[[\hbar]]$

is a Drinfel'd twist, i.e., F satisfies

$$(\Delta \otimes \mathrm{id})F \cdot F_{12} = (\mathrm{id} \otimes \Delta)F \cdot F_{23};$$

 $(\epsilon \otimes \mathrm{id})F = (\mathrm{id} \otimes \epsilon)F = 1;$
 $F = 1 \otimes 1 + O(\hbar).$

Write $F = F_1 \otimes F_2$, F_1 , $F_2 \in U(\mathfrak{g})$ (Sweedler's notation). Then

$$f\star g := F(f,g) = (F_1 \rhd f) \cdot (F_2 \rhd g), \quad \forall f,g \in C^{\infty}(M)\llbracket \hbar \rrbracket,$$

defines a star product on $C^{\infty}(M)[[\hbar]]$.

An iterative procedure to write down an explicit universal deformation formula starting from classical triangular *r*-matrices is given in the work [Dolgushev-Isaev-Lyakhovich-Sharapov].

This approach extends the Fedosov approach and has the advantage of not choosing auxiliary symplectic connections, it provides star products for a broad class of manifolds with irregular Poisson brackets.

In this talk, we will extend the method of [Dolgushev-Isaev-Lyakhovich-Sharapov] to the case of classical triangular dynamical *r*-matrices.

Xu introduced the quantum dynamical Yang–Baxter equation (QDYBE), or generalized Gervais–Neveu–Felder equation, over a nonabelian base \mathfrak{h}^* .

Let $\mathfrak g$ be a Lie algebra and $\mathfrak h\subset \mathfrak g$ be a not necessarily abelian Lie subalgebra.

Let $\{h_i\}$ be a vector basis of \mathfrak{h} , $\{\lambda^i\}$ be the corresponded linear coordinates on \mathfrak{h}^* , and $\{\xi^i \in \mathfrak{h}^*\}$ be the dual basis.

Let

$$R:\mathfrak{h}^*\to U(\mathfrak{g})\otimes U(\mathfrak{g})\llbracket\hbar
rbracket$$

be a $\ensuremath{\mathfrak{h}}\xspace$ -equivariant map, i.e., the following zero weight condition is satisfied

$$(L_{\mathrm{Ad}_{h_i}^*}R)(\lambda) + [h_i \otimes 1 + 1 \otimes h_i, R(\lambda)] = 0, \quad \forall h_i \in \mathfrak{h}, \lambda \in \mathfrak{h}.$$

We treat R as an element in $U(\mathfrak{g}) \otimes U(\mathfrak{g}) \otimes C^{\infty}(\mathfrak{h}^*)[\![\hbar]\!]$. The space $C^{\infty}(\mathfrak{h}^*)[\![\hbar]\!]$ is endowed with the PBW product \star_{PBW} , induced by the PBW isomorphism $S(\mathfrak{h}) \simeq U(\mathfrak{h})$.

The non-abelian QDYBE has the following form:

$$\begin{split} R_{12}(\lambda) \star_{\text{PBW}} & R_{13}(\lambda + \hbar h^{(2)}) \star_{\text{PBW}} R_{23}(\lambda) \\ &= R_{23}(\lambda + \hbar h^{(1)}) \star_{\text{PBW}} R_{13}(\lambda) \star_{\text{PBW}} R_{12}(\lambda + \hbar h^{(3)}) \end{split}$$

Background

The classical limit of the quantum dynamical *R*-matrix is the classical dynamical *r*-matrix,

$$egin{aligned} &r:\mathfrak{h}^* o\mathfrak{g}\otimes\mathfrak{g}\,,\ &r(\lambda):=\lim_{\hbar o0}rac{1}{\hbar}(R(\lambda)-1\otimes1)\,, \end{aligned}$$

satisfies the $\ensuremath{\mathfrak{h}}\xspace$ -equivariant condition

$$(L_{\operatorname{Ad}_{h_i}^*}r)(\lambda) + [h_i \otimes 1 + 1 \otimes h_i, r(\lambda)] = 0$$

and the non-abelian classical dynamical Yang-Baxter equation(CDYBE)

$$\sum_{i} h_i \frac{\partial}{\partial \lambda_i} r + [r, r] = 0.$$

Suppose that

$$F:\mathfrak{h}^* o U(\mathfrak{g})\otimes U(\mathfrak{g})\llbracket\hbar
rbracket$$

is a \mathfrak{h} -equivariant map and satisfies the nonabelian dynamical twist equation:

$$\begin{split} (\Delta \otimes \mathrm{id})F(\lambda) \star_{\mathrm{PBW}} F_{12}(\lambda + \hbar h^{(3)}) &= (1 \otimes \Delta)F(\lambda) \star_{\mathrm{PBW}} F_{23}(\lambda) \\ (\epsilon \otimes \mathrm{id})F(\lambda) &= (\mathrm{id} \otimes \epsilon)F(\lambda) = 1; \\ F(\lambda) &= 1 \otimes 1 + O(\hbar) \,. \end{split}$$

Then

$$R(\lambda) := F_{21}^{-1}(\lambda) \star_{\text{PBW}} F(\lambda)$$

is a solution of the non-abelian QDYBE.

Let G be a Lie group of \mathfrak{g} .

Theorem (Xu)

A map $r : \mathfrak{h}^* \to \mathfrak{g} \land \mathfrak{g}$ satisfies the (non-abelian) CDYBE if and only

$$\pi_r := \pi_{\mathfrak{h}^*} + \sum_i rac{\partial}{\partial \lambda_i} \wedge ec{h_i} + ec{r(\lambda)}$$

is a Poisson structure on $\mathfrak{h}^* \times G$. Here $\pi_{\mathfrak{h}^*} = \sum c_{i,j}^k \lambda^k \frac{\partial}{\partial \lambda_i} \wedge \frac{\partial}{\partial \lambda_j}$ is the Lie-Poisson structure on \mathfrak{h}^* , $c_{i,j}^k$ are the structure constants of \mathfrak{h} .

We call $r(\lambda)$ a (non-abelian) symplectic triangular dynamical *r*-matrix, if π_r comes from a symplectic structure on $\mathfrak{h}^* \times G$.

Theorem (Xu)

Any abelian (i.e., \mathfrak{h} is abelian) symplectic or splittable triangular dynamical r-matrix is quantizable.

Theorem (Alekseev-Calaque)

Any non-abelian symplectic triangular dynamical r-matrix is quantizable.

Both Xu and Alekseev-Calaque adopted Fedosov approach to construct quantizations.

Background

Theorem (Xu)

A map $F : \mathfrak{h}^* \to U(\mathfrak{g}) \otimes U(\mathfrak{g})[\![\hbar]\!]$ satisfies the (non-abelian) dynamical twist equation if and only if there is a star product \star on $\mathfrak{h}^* \times G$ such that it satisfies the following conditions: (1) $g_1(\lambda) \star g_2(\lambda) = g_1(\lambda) \star_{\text{PBW}} g_2(\lambda), \forall g_1(\lambda), g_2(\lambda) \in C^{\infty}(\mathfrak{h}^*);$ (2) $f(x) \star g(\lambda) = f(x) \cdot g(\lambda), \forall f(x) \in C^{\infty}(G), g(\lambda) \in C^{\infty}(\hbar^*);$ (3) $g(\lambda) \star f(x) = \sum_{k} \frac{\hbar^{k}}{k!} (\frac{\partial^{k}}{\partial \lambda^{i_{1}} \dots \lambda^{i_{k}}} g) \cdot (\overrightarrow{h_{i_{1}}} \cdots \overrightarrow{h_{i_{k}}} g),$ $\forall f(x) \in C^{\infty}(G), g(\lambda) \in C^{\infty}(\mathfrak{h}^*);$ (4) $f_1(x) \star f_2(x) = F(\lambda)(f_1, f_2), \forall f_1(x), f_2(x) \in C^{\infty}(G).$

Such star product is called a compatible star product. If it exists, it is completely determined by F in terms of an explicit formula (Xu). We note that a compatible star product is not symmetric with respect to variables $\lambda \in \mathfrak{h}^*$ and $x \in G$. Thus it can not be of Weyl ordering.

Questions

When \mathfrak{h} is abelian, consider the Lie algebroid

$$(T\mathfrak{h}^*\oplus\mathfrak{g})_{\mathfrak{h}^*}:=\left(T\mathfrak{h}^*\oplus\mathfrak{g}\to\mathfrak{h}^*\right)$$

over the base manifold $\mathfrak{h}^*.$ Here \mathfrak{g} acts trivially on $\mathfrak{h}^*.$ In this abelian case, Xu construct a twistor

$$\mathcal{F}:=\mathcal{F}(\lambda)\cdot\Theta\in U(\mathcal{T}\mathfrak{h}^*\oplus\mathfrak{g})_{\mathfrak{h}^*}\otimes_{\mathcal{C}^\infty(\mathfrak{h}^*)}U(\mathcal{T}\mathfrak{h}^*\oplus\mathfrak{g})_{\mathfrak{h}^*}\llbracket\hbar
bracket,$$

where

$$\Theta = \exp(\hbar\theta), \quad \theta = \sum_i \frac{\partial}{\partial \lambda_i} \otimes h_i, \quad h_i \in \mathfrak{h} \subset \mathfrak{g}.$$

From this twistor \mathcal{F} , Xu constructed the quantum groupoid

$$\left(U(\mathcal{T}\mathfrak{h}^*\oplus\mathfrak{g})_{\mathfrak{h}^*}\llbracket\hbar\rrbracket,\cdot,\Delta_{\mathcal{F}},\alpha_{\mathcal{F}},\beta_{\mathcal{F}},\epsilon\right),\quad \Delta_{\mathcal{F}}^{\mathrm{op}}(x)=R(\lambda)\cdot\Delta(x)\cdot R^{-1}(\lambda)$$

which corresponds to the quantum dynamical *R*-matrix $R(\lambda) = F_{21}(\lambda)^{-1}F(\lambda)$.

The deformation formula of quantum dynamical Yang-Baxter equations over a non-abelian base Jiaha

Question 1:

When \mathfrak{h} is a non-abelian Lie subalgebra of \mathfrak{g} , and $R(\lambda)$ is a non-abelian quantum dynamical *R*-matrix, what is the quantum groupoid (in the sense of Xu) corresponds to $R(\lambda)$, what is the twistor \mathcal{F} for constructing this quantum groupoid?

Question 2:

Suppose that the Lie algebra g acts on a manifold *M*. What is the universal deformation formula for the aforesaid quantum groupoid? Suppose that $R(\lambda)$ is a quantization of a symplectic triangular dynamical *r*-matrix $r(\lambda)$. Can we have an iterative procedure to write down an explicit universal deformation formula starting from $r(\lambda)$, which generalizes the results of [Dolgushev-Isaev-Lyakhovich-Sharapov]?

Quantum Groupoids

The field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Let *R* be an associative algebra with unit.

Definition (following Xu's Quantum Groupoid paper)

A quantum groupid $(\mathcal{H}, \cdot, \Delta, \alpha, \beta, \epsilon)$ over R consists of the following data with compatibility conditions:

- (1) \mathcal{H} is an associative algebra with unit 1.
- (2) Two associative algebra morphisms, the **source map** $\alpha : R \to \mathcal{H}$ and the **target map** $\beta : R^{\mathrm{op}} \to \mathcal{H}$. Their images commute.

The (R, R)-bimodule structure on \mathcal{H} :

 $r \cdot h := \alpha(r) \cdot h, \ h \cdot r' := \beta(r') \cdot h, \ \forall r, r' \in R, h \in \mathcal{H}.$

(3) The **coproduct** $\Delta : \mathcal{H} \to \mathcal{H} \otimes_R \mathcal{H}$ is a coassociative (R, R)-bimodule morphism, satisfies $\Delta(1) = 1 \otimes 1$, and $\Delta(U) = (2(2) \otimes 1) = (2(2) \otimes 1) = 2(2(2) \otimes 1)$

$$\Delta(h)\cdot (eta(r)\otimes 1-lpha(r)\otimes 1)=\mathsf{0}\,,\ \ orall h\in\mathcal{H},r\in R\,,$$

$$\Delta(h_1\cdot h_2)=\Delta(h_1)\cdot\Delta(h_2)\,,\quad orall h_1\,,h_2\in\mathcal{H}\,.$$

Definition (continuted)

(4) The **counit map** $\epsilon : \mathcal{H} \to R$, a (R, R)-bimodule morphism, satisfies $\epsilon(1) = 1$, $(\epsilon \otimes id) \circ \Delta = (id \otimes \epsilon) \circ \Delta = id$, and

 $\operatorname{Ker}(\epsilon)$ is a left \mathcal{H} -ideal in \mathcal{H} .

Example

Suppose that $L \to M$ is a Lie algebroid over M. Then the universal enveloping algebra U(L) is a quantum groupoid over $C^{\infty}(M)$, with $\alpha = \beta : C^{\infty}(M) \to U(L)$ the inclusion map.

Twistors

Let $(\mathcal{H}, \cdot, \Delta, \alpha, \beta, \epsilon)$ be a quantum groupoid over R.

Definition

An element $\mathcal{F} \in \mathcal{H} \otimes_R \mathcal{H}$ is called a twistor, if it satisfies the following conditions:

 $(1) \ (\Delta \otimes \mathrm{id})\mathcal{F} \cdot \mathcal{F}_{12} = (\mathrm{id} \otimes \Delta)\mathcal{F} \cdot \mathcal{F}_{23} \,, \ (\epsilon \otimes \mathrm{id})\mathcal{F} = (\mathrm{id} \otimes \epsilon)\mathcal{F} = 1 \,.$

(2) For all left \mathcal{H} -modules M_1 and M_2 , the maps

$$\mathcal{F}^{\sharp}: M_1 \otimes_{R_{\mathcal{F}}} M_2 o M_1 \otimes_R M_2 \ m_1 \otimes_{R_{\mathcal{F}}} m_2 \mapsto \mathcal{F} \cdot (m_1 \otimes_R m_2)$$

are all isomorphisms.

In Condition (2) above, R_F denotes a new associative algebra structure on R whose multiplication is given by

$$r_1 \star_{\mathcal{F}} r_2 := (\mathcal{F}_1 \rhd r_1) \cdot (\mathcal{F}_2 \rhd r_2), \quad \forall r_1, r_2 \in R.$$

Condition (1) guarantees that $\star_{\mathcal{F}}$ is an associative multiplication.

Theorem (Xu)

If $\mathcal{F} \in \mathcal{H} \otimes_R \mathcal{H}$ is a twistor, then we have a new quantum groupoid $\mathcal{H}_{\mathcal{F}} = (\mathcal{H}, \cdot, \Delta_{\mathcal{F}}, \alpha_{\mathcal{F}}, \beta_{\mathcal{F}}, \epsilon),$ over the deformed associative algebra $R_{\mathcal{F}} = (R, \star_{\mathcal{F}})$. The

multiplication \cdot and counit ϵ of $\mathcal{H}_{\mathcal{F}}$ are unchanged, and

$$\begin{split} \Delta_{\mathcal{F}}(x) &= (\mathcal{F}^{\sharp})^{-1} (\Delta(X) \cdot \mathcal{F}), \quad \forall x \in \mathcal{H}; \\ \alpha_{\mathcal{F}}(r) &= (\mathcal{F}_1 \rhd r) \mathcal{F}_2, \quad \beta_{\mathcal{F}}(r) = \mathcal{F}_1(\mathcal{F}_2 \rhd r), \\ r_1 \star_{\mathcal{F}} r_2 &= (\mathcal{F}_1 \rhd r_1) (\mathcal{F}_2 \rhd r_2), \qquad \forall r, r_1, r_2 \in R. \end{split}$$

Quantum Groupoids for Non-abelian R-matrices

Suppose that $\mathfrak{h} \subset \mathfrak{g}$ is a non-abelian Lie subalgebra. In this case, \mathfrak{h} acts non-trivially on \mathfrak{h}^* by the adjoint action. Meanwhile, the abelian Lie algebra \mathfrak{h}^* acts on the manifold \mathfrak{h}^* by derivations with constant coefficients:

$$\xi^i \in \mathfrak{h}^* \mapsto \frac{\partial}{\partial \lambda^i} \in \Gamma(T\mathfrak{h}^*).$$

The pair $(\mathfrak{h}, \mathfrak{h}^*)$ is a Lie bialgebra, its Drinfel'd double is denoted by $\mathbb{D}(\mathfrak{h})$. The aforesaid two actions of \mathfrak{h} and \mathfrak{h}^* on the manifold \mathfrak{h}^* extends to a Lie algebra action of $\mathbb{D}(\mathfrak{h})$ on \mathfrak{h}^* .

Let
$$\mathbb{D}(\mathfrak{h})_{\mathfrak{h}^*} := \left(\mathbb{D}(\mathfrak{h}) \times \mathfrak{h}^* \to \mathfrak{h}^*\right)$$
 be the action Lie algebroid of $\mathbb{D}(\mathfrak{h})$ over \mathfrak{h}^* .

We have the identification of the two Lie algebroids over \mathfrak{h}^\ast

$$\mathbb{D}(\mathfrak{h})_{\mathfrak{h}^*} = (T\mathfrak{h}^* \oplus \mathfrak{h})_{\mathfrak{h}^*}$$
 .

Quantum Groupoids for Non-abelian R-matrices

Let H be a Lie group of \mathfrak{h} .

The canonical classical *r*-matrix

$$\sum_i \xi^i \wedge h_i \ \in \wedge^2 \mathbb{D}(\mathfrak{h})$$

induces the Poisson structure

$$\sum_{i} \frac{\partial}{\partial \lambda^{i}} \wedge \mathcal{L}_{\mathrm{Ad}_{h_{i}}^{*}} + \sum_{i} \frac{\partial}{\partial \lambda^{i}} \wedge \overset{\rightarrow}{h_{i}} = \pi_{\mathfrak{h}^{*}} + \sum_{i} \frac{\partial}{\partial \lambda^{i}} \wedge \overset{\rightarrow}{h_{i}}$$

on $\mathfrak{h}^* \times H$. It is known that this Poisson structure corresponds to the canonical symplectic structure on the cotangent bundle

$$T^*H\simeq\mathfrak{h}^*\times H$$
.

In [Gutt], a compatible star product which quantizes the above symplectic structure is given, thus we have the corresponded twistor

$$\widetilde{\Theta} \in \mathit{U}(\mathit{T}\mathfrak{h}^{*}\oplus\mathfrak{h})_{\mathfrak{h}^{*}}\otimes_{\mathit{C}^{\infty}(\mathfrak{h}^{*})} \mathit{U}(\mathit{T}\mathfrak{h}^{*}\oplus\mathfrak{h})_{\mathfrak{h}^{*}}.$$

In the following, we will assume that $\mathfrak g$ admits a reductive decomposition:

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$$
, $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$.

We can extend the adjoint \mathfrak{h} -action on \mathfrak{h}^* to an action of \mathfrak{g} on \mathfrak{h}^* , by setting the action of \mathfrak{m} on \mathfrak{h}^* to be zero. Then we obtain a Lie algebroid

$$(\mathcal{T}\mathfrak{h}^*\oplus\mathfrak{g})_{\mathfrak{h}^*}:=\left(\mathcal{T}\mathfrak{h}^*\oplus\mathfrak{g}
ightarrow\mathfrak{h}^*
ight)$$

which contains the Lie subalgebroid $(T\mathfrak{h}^* \oplus \mathfrak{h})_{\mathfrak{h}^*}$.

Theorem

Suppose that \mathfrak{g} admits a reductive decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ (So that $(T\mathfrak{h}^* \oplus \mathfrak{g})_{\mathfrak{h}^*}$ is defined). Let $F : \mathfrak{h}^* \to U(\mathfrak{g}) \otimes U(\mathfrak{g})[\![\hbar]\!]$ be a map which has the form $F(\lambda) = 1 \otimes 1 + O(\hbar)$. Then

$$\widetilde{\mathcal{F}}:=\mathcal{F}(\lambda)\cdot\widetilde{\Theta}\in \mathit{U}(\mathit{T}\mathfrak{h}^{*}\oplus\mathfrak{g})_{\mathfrak{h}^{*}}\otimes_{\mathit{C}^{\infty}(\mathfrak{h}^{*})}\mathit{U}(\mathit{T}\mathfrak{h}^{*}\oplus\mathfrak{g})_{\mathfrak{h}^{*}}\llbracket\hbar
rbracket$$

is a twistor of the quantum groupoid $U(T\mathfrak{h}^* \oplus \mathfrak{g})_{\mathfrak{h}^*}[\![\hbar]\!]$ if and only if $F(\lambda)$ is a solution of the non-abelian dynamical twist equation.

The proof relies on the results of [Donin-Murdov] on twisting by dynamical cocycles.

Corollary

With the same assumption as above. Let M be a manifold with an action of a Lie algebra $\rho : \mathfrak{g} \to TM$. Then the universal deformation formula

$$f(\lambda, x) \star g(\lambda, x) := ((
ho \otimes
ho) \widetilde{\mathcal{F}})(f, g), f, g \in C^{\infty}(\mathfrak{h}^* imes M),$$

for all $f, g \in C^{\infty}(\mathfrak{h}^* \times M)$, $\lambda \in \mathfrak{h}^*$, $x \in M$, defines a star product on $\mathfrak{h}^* \times M$ which satisfies the following properties:

(1)
$$g_1(\lambda) \star g_2(\lambda) = g_1(\lambda) \star_{\text{PBW}} g_2(\lambda), \forall g_1(\lambda), g_2(\lambda) \in C^{\infty}(\mathfrak{h}^*);$$

(2) $f(x) \star g(\lambda) = f(x) \cdot g(\lambda), \forall f(x) \in C^{\infty}(M), g(\lambda) \in C^{\infty}(\hbar^*);$
(3) $g(\lambda) \star f(x) = \sum_k \frac{\hbar^k}{k!} (\frac{\partial^k}{\partial \lambda'_1 \dots \lambda'_k} g) \cdot (\rho(h_{i_1}) \cdots \rho(h_{i_k})g),$
 $\forall f(x) \in C^{\infty}(M), g(\lambda) \in C^{\infty}(\mathfrak{h}^*);$
(4) $f_1(x) \star f_2(x) = (\rho \otimes \rho)(F(\lambda))(f_1, f_2), \forall f_1(x), f_2(x) \in C^{\infty}(M).$

In the following we will assume that $r : \mathfrak{h}^* \to \mathfrak{g} \land \mathfrak{g}$ is a symplectic triangular dynamical *r*-matrix. We know that $r(\lambda)$ can be quantized to a quantum dynamical twist $F(\lambda) : \mathfrak{h}^* \to U(\mathfrak{g}) \otimes U(\mathfrak{g})[[\hbar]].$

Since $\pi_r := \pi_{\mathfrak{h}^*} + \sum_i \frac{\partial}{\partial \lambda_i} \wedge \stackrel{\rightarrow}{h_i} + \stackrel{\longrightarrow}{r(\lambda)} \in \Gamma(\wedge^2(T\mathfrak{h}^* \oplus \mathfrak{g})_{\mathfrak{h}^*})$ is non-degenerate, we obtain the symplectic from

$$\omega_r := \pi_r^{-1} : \wedge^2 (T\mathfrak{h}^* \oplus \mathfrak{g})_{\mathfrak{h}^*} \to \mathbb{K}.$$

This 2-cocycle defines a Lie algebroid extension

$$0 \to \mathbb{K}\hbar \to L \to (\mathit{T}\mathfrak{h}^* \oplus \mathfrak{g})_{\mathfrak{h}^*,\hbar} \to 0$$

over \mathfrak{h}^* . We use $\{y_{\alpha}\}$ to denote the basis of fiber vectors of $(T\mathfrak{h}^* \oplus \mathfrak{g})_{\mathfrak{h}^*}$ over \mathfrak{h}^* . Then the Lie bracket on $\Gamma(L)$ has the form:

$$\begin{split} & [y_{\alpha}, y_{\beta}]_{L} = \hbar [y_{\alpha}, y_{\beta}]_{T\mathfrak{h}^{*} \oplus \mathfrak{g}} + \hbar \omega_{r} (y_{\alpha}, y_{\beta}), \\ & [y_{\alpha}, f\hbar]_{L} = (y_{\alpha} \cdot f)\hbar, \quad \forall y_{\alpha} \in \Gamma (T\mathfrak{h}^{*} \oplus \mathfrak{g}), f \in C^{\infty} (\mathfrak{h}^{*}). \end{split}$$

Here $y_{\alpha} \cdot f$ means the action of y_{α} on the function $f \in C^{\infty}(\mathfrak{h}^*)$ by the anchor map.

The deformation formula of quantum dynamical Yang-Baxter equations over a non-abelian base

Consider the universal enveloping algebra U(L) of L over $C^{\infty}(\mathfrak{h}^*)$. It is endowed with the natural associative multiplication, denoted by \circ .

Let $\sigma: U(L) \otimes C^{\infty}(M) \to C^{\infty}(\mathfrak{h}^* \times M)[[\hbar]]$ be the projection map which sends all homogeneous symmetric products of vectors y_{α} (as PBW basis) in U(L) to zero.

Let *M* be a smooth manifold with a Lie algebra g-action, so that we have a morphism of Lie algebroid over $\mathfrak{h}^* \times M$:

$$\rho: L = (T\mathfrak{h}^* \oplus \mathfrak{g} \oplus \mathbb{K}\hbar)_{\mathfrak{h}^*} \to T(\mathfrak{h}^* \times M).$$

Here the action of the trivial line bundle $\mathbb{K}\hbar$ on $\mathfrak{h}^* \times M$ is zero.

Define an operator $\delta: U(L) \otimes C^{\infty}(M) \rightarrow U(L) \otimes C^{\infty}(M)$:

$$\delta(A) := \sum_{\alpha,\beta} y_{\beta}(\omega_{r})_{\alpha,\beta}^{-1}(\rho(y_{\alpha}) \cdot A + [y_{\alpha}, A]_{\circ}), \quad \forall A \in U(L) \otimes C^{\infty}(M).$$

Here $[y_{\alpha}, \cdot]_{\circ}$ is the commutator with respect the natural associative multiplication \circ on U(L).

The deformation formula of quantum dynamical Yang-Baxter equations over a non-abelian base 👘 Jiah

Theorem

With the same assumption as above. Then the map

 $F:\mathfrak{h}^* \to U(\mathfrak{g})\otimes U(\mathfrak{g})\llbracket\hbar
rbracket$

defined by the formula

 $((\rho \otimes \rho)F(\lambda))(f,g) := \sigma(\exp(\hbar\delta)f \circ \exp(\hbar\delta)g)$

for all $f, g \in C^{\infty}(M)$, satisfies the (non-abelian) quantum dynamical twist equation and its classical limit is the given symplectic triangular dynamical r-matrix $r(\lambda)$.

Here $\rho : \mathfrak{g} \to TM$ is the Lie algebra action, $exp(\hbar\delta)f, exp(\hbar\delta)g \in U(L)$, and $exp(\hbar\delta)f \circ exp(\hbar\delta)g$ is the multiplication in U(L).

Thus we can further obtain the twistor $\widetilde{\mathcal{F}} := F(\lambda) \cdot \widetilde{\Theta}$, and the associated universal deformation formula.

The deformation formula of quantum dynamical Yang-Baxter equations over a non-abelian base 👘 🚽

Remark:

For general $f(\lambda, x), g(\lambda, x) \in C^{\infty}(\mathfrak{h}^{\star} \times M)$, The formula

$$f \star_{\mathrm{Weyl}} g := \sigma(\exp(\hbar\delta)f \circ \exp(\hbar\delta)g)$$

defines a star product, but it is not a compatible star product.

Even though, we can construct the desired quantum dynamical twist $F(\lambda)$ by setting

$$((\rho \otimes \rho)F(\lambda))(f,g) := \sigma(\exp(\hbar\delta)f \circ \exp(\hbar\delta)g), \forall f,g \in C^{\infty}(M).$$

Then the desired compatible star product \star is determined by $F(\lambda) = \sum f_{\alpha,\beta}(\lambda) U_{\alpha} \otimes U_{\beta}$, $f_{\alpha,\beta}(\lambda) \in C^{\infty}(\mathfrak{h}^*)$, U_{α} , $U_{\beta} \in U(\mathfrak{g})[[\hbar]]$, in terms of Xu's formula:

$$f(\lambda, x) \star g(\lambda, x) = \sum \frac{\hbar^{k}}{k!} f_{\alpha,\beta}(\lambda) \star_{\text{PBW}} \rho(U_{\alpha}) \frac{\partial^{k} f}{\partial \lambda^{i_{1}} \cdots \partial \lambda^{i_{k}}} \star_{\text{PBW}} \rho(U_{\beta}) \rho(h_{i_{1}}) \cdots \rho(h_{i_{k}}) g,$$

for $\lambda \in \mathfrak{h}^{*}, x \in M$.

Thanks for your attention.