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A short overview of the topic

Main examples: Painlevé equations.

• Problem: define new functions by an ODE of the mth order with properties that generalize
those of elliptic functions. [L. Fuchs], [H. Poincaré]

• Painlevé property: the general solution of an ODE has no critical movable points.
• m = 2: six classes defining the Painlevé transcendents. [Painlevé, 1902], [Gambier, 1910]

▶ Painlevé equations being one of the important objects in mathematics and mathematical
physics have various non-commutative (NC) analogs: quantum [Nagoya, 2004],
matrix differential [Kawakami, 2015], NC "differential" [Bobrova and Sokolov, 2023b],
matrix difference [Cassatella-Contra et al., 2014],
NC difference [Bobrova, Retakh, Rubtsov, Sharygin, 2024]

▶ Some of them are connected with integrable non-abelian PDEs [Olver and Sokolov, 1998]
and P∆Es [Adler, 2020], Riemann-Hilbert problem [Cafasso and Manuel, 2014], orthogonal
polynomials [Cafasso et al., 2018], Calogero systems [Bertola et al., 2018], and etc.

▶ In the commutative case, discrete Painlevé equations have been studied in a series of papers
by B. Gramaticos and A. Ramani since 1990s, but without understanding the whole picture.

▶ The latter was clarified by H. Sakai in his famous paper [Sakai, 2001], whose geometric
method was inspired by a series of K. Okamoto’s papers.

▶ NC birational geometry and Painlevé equations. [Okounkov and Rains, 2015], [Rains, 2019]
▶ An application of the affine Weyl groups to discrete Painlevé equations.

[Noumi and Yamada, 1998], [Noumi and Yamada, 2000]
▶ Symmetries of the Hamiltonian matrix Painlevé equations. [Bershtein et al., 2023]
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Our goals & results

Global goal
▶ Generalize Sakai’s approach to the non-commutative case in order to obtain a full

classification of NC versions for the discrete Painlevé equations.

Local goal
▶ Generalize Noumi-Yamada’s approach to the non-commutative case in order to obtain

NC versions of the d-Painlevé equations.

Results
▶ Extended representations of the affine Weyl groups W and NC discrete systems.
▶ NC analogs for the d-Painlevé equations obtained by using extended representations of W .

Note that the commutative degeneration scheme holds in the NC case.
▶ NC dressing chains in the Noumi-Yamada variables:

▶ Lax pairs,
▶ Bäcklund transformations,
▶ a description of the related discrete dynamics.
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A NC version of the d-P(E7)



NC setting

▶ Consider an associative unital division ring R over the field C equipped with a derivation.
▶ We assume that all greek letters belong to the field C, while the elements fi are from R.

We will often call fi as functions.
▶ The derivation dt : R → R of the ring R is a C-linear map satisfying the Leibniz rule.

We also assume that there is a central element t such that dt(t) = 1 and for any α ∈ C
we have dt(α) = 0. Here and below we identify the unit of the field with the unit of the ring.

▶ For the brevity we denote dt(fi ) = ḟi , d2
t (fi ) = f̈i , and so on.

▶ Note that we have an involution on R called the transposition τ , which acts trivially on the
generators of R and for any elements F , G ∈ R we have τ(F G) = τ(G) τ(F ).
This involution can be naturally extended to the matrices over R.

Remark. We would rather not specify the generators of the ring R in order to avoid
an overloaded description of a skew field (see [Cohn, 1995]). Instead, we encourage to think of
the ring R as a generalization of rational functions over C to a non-commutative case.
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The P2 equation (1)

▶ Consider the P2 system [Retakh and Rubtsov, 2010] (see also [Adler and Sokolov, 2021])

{
q̇ = −q2 + p − 1

2 t,

ṗ = qp + pq + α1.
P2

▶ Here we can assume that t is also an element of R such that ṫ = 1.
▶ Let α0 + α1 = 1 and f := −p + 2q2 + t.
▶ Its Bäcklund transformations are given below (cf. with [Bershtein et al., 2023])

α0 α1 q p t

s0 −α0 α1 + 2α0 q − α0 f
−1 p − 2α0qf −1 − 2α0f −1q + 2α0f −2 t

s1 α0 + 2α1 −α1 q + α1p−1 p t

π α1 α0 −q −p + 2q2 + t t

▶ These elements form an extended affine Weyl group of type A
(1)
1 :

W̃ (A
(1)
1 ) = ⟨s0, s1;π⟩,

s2i = 1, π2 = 1, πsi = si+1π, i ∈ Z/
2Z.

(1)
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The P2 equation (2)

α0 α1 q p t

s0 −α0 α1 + 2α0 q − α0 f
−1 p − 2α0qf −1 − 2α0f −1q + 2α0f −2 t

s1 α0 + 2α1 −α1 q + α1p−1 p t

π α1 α0 −q −p + 2q2 + t t

▶ Consider the translation operator T = s1π. It acts on the parameters according to the
formula below and forms a lattice on a line:

T (α0, α1) = (α0 − 1, α1 + 1). (2)

▶ The q and p variables change as follows

q̄ = s1π(q) = −s1(q) = −q − α1p
−1, p̄ = s1π(p) = s1(−p + 2q2 + t) = −p + 2q̄2 + t.

▶ So, we obtain the system for T (q) = q̄, T (p) = p̄

ᾱ0 = α0 − 1, ᾱ1 = α1 + 1,

q̄ + q = −α1p
−1, p̄ + p = t + 2q̄2.

d-P(E7)

▶ It generalizes to the non-commutative case the d-P(E7) equation from [Sakai, 2001] (p. 206).
▶ It reduces to the following second-order difference equation for T n(q) = qn:

α1,n (qn+1 + qn)
−1 + α1,n−1 (qn + qn−1)

−1 = −2q2
n − t, α1,n = α1 + n. alt-d-P1
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The d-P(E7) system: a Lax pair

ᾱ0 = α0 − 1, ᾱ1 = α1 + 1,

q̄ + q = −α1p
−1, p̄ + p = t + 2q̄2.

d-P(E7)

▶ One may also consider the corresponding non-commutative discrete linear problem ∂λY = AY ,

Ȳ = BY .
(3)

▶ A Lax pair for the d-P(E7) is given by

A =

(
1 0
0 −1

)
λ2 +

(
0 1
2p 0

)
λ+

(
−p + 1

2 t −q

2pq + 2α1 p − 1
2 t

)
,

B =

(
−2 0
0 0

)
λ+

(
−2q −1
−2p̄ 0

)
,

where t, λ ∈ Z(R).
▶ Note that the compatibility condition is satisfied, since the commutator [p, q] is invariant

under the map

ψ : R2 → R2, (q, p) 7→ (q̄, p̄) =
(
−p + t + 2q2, −q − ᾱ1(−p + t + 2q2)−1) . (4)

▶ Once t ∈ R, the commutator [p, q] is no longer a conserved quantity.
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The d-P(E7) system: a continuous limit

ᾱ0 = α0 − 1, ᾱ1 = α1 + 1,

q̄ + q = −α1p
−1, p̄ + p = t + 2q̄2.

d-P(E7)

Remark. One may consider a non-commutative analog for the continuous limit as follows.
For the simplicity, suppose that we have a difference equation for the functions fn. One can take
the change of variables with the commutative parameter ε

z = ε n (5)

supplemented by the maps

fn = F , fn+k = F + k εḞ + 1
2k

2 ε2F̈ + O(ε3). (6)

The latter must be chosen in such a way that the limit ε→ 0 exists.

▶ By using the formulas

q = 1 + ε2 Q − 1
6 ε

3 P, p = −2 + 2ε2 Q + 2
3 ε

3 P, t = −6 + 1
3 ε

4 T , α1 = 4 + 2
3 ε

4 T ,

the d-P(E7) has the P1 system in the limit ε→ 0:{
q̇ = p,

ṗ = 6q2 + t.
P1
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The d-P(E7) system: a Hamiltonian form

ᾱ0 = α0 − 1, ᾱ1 = α1 + 1,

q̄ + q = −α1p
−1, p̄ + p = t + 2q̄2.

d-P(E7)

Remark. Here we use non-commutative partial derivatives introduced in [Kontsevich, 1993].
Let f = f (q, p) ∈ R. Its non-commutative derivatives ∂qf , ∂pf are defined by the identity

df = ∂qf dq + ∂pf dp, (7)

where it is assumed that additional non-commutative symbols dq, dp are moved to the right by
cyclic permutations of generators in monomials.

▶ Similar to [Veselov, 1991], we call a difference discrete system Hamiltonian if there exists an
element H = H(q, p̄) ∈ R such that the system can be rewritten in the form

p = ∂qH, q̄ = ∂p̄H. (8)

▶ For the d-P(E7) system, a Hamiltonian is H = −q p̄ + tq + 2
3q

3 − ᾱ1 ln p̄, where for the
element ln f we define the right logarithmic derivative by dt(ln f ) := f −1 ḟ .
(cf. with [Mase et al., 2020])

▶ Then, the non-commutative derivatives are

∂qH = −p̄ + 2q2 + t, ∂p̄H = −q − ᾱ1 p̄
−1, ∂tH = q (9)

and (8) is equivalent to the d-P(E7) system.
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Affine Weyl groups and NC discrete systems



Affine Weyl groups W

▶ Let us fix a generalized Cartan matrix C = (cij ), where i , j ∈ I := {0, 1, . . . , n}.
▶ Sets ∆ = {α0, . . . , αn}, ∆∨ = {α∨

0 , . . . , α
∨
n } correspond to simple roots and simple co-roots.

▶ Denote by Q = Q(C) and Q∨ = Q∨(C) the root and co-root lattices.
The pairing ⟨ · , · ⟩ : Q × Q∨ → Z is defined by ⟨αi , α

∨
j ⟩ = cij and α∨

i = 2αi/(αi , αi ).
▶ Denote by W = W (C) the Weyl group (or the Coxeter group) defined by generators si , i ∈ I :

W (C) = ⟨s0, s1, . . . , sn
∣∣ s2i = 1, (si sj )mij = 1⟩, (10)

where the exponents are determined by the value of the product cijcji as below
cijcji 0 1 2 3 ≥ 4
mij 2 3 4 6 ∞

▶ These generators act naturally on Q by reflections

si (αj ) = αj − ⟨αi , α
∨
j ⟩αi = αj − cij αi . (11)

▶ Each si -action on Q induces an automorphism of the field C(α) of rational functions in αi .
Hence, C(α) is a left W -module.

▶ Recall that one of the important properties of the affine Weyl groups is that they have
translations, also known as Kac translations. Let W0 be a finite Weyl group, δ =

∑
i∈I ki αi

be the null root and V0 =
{
µ ∈ V

∣∣ ⟨µ, δ∨⟩ = 0
}
. For an element µ ∈ V0 such that

⟨µ, µ∨⟩ ̸= 0 we define a translation element tµ ∈ W by the formula

tµ = sδ−µ sµ (12)

and suppose that w tµ = tw(µ) w for any w ∈ W .
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Extended representations of W & NC discrete dynamics

▶ The Kac translation acts on simple affine roots as follows

tµ(α) = α− ⟨µ, α⟩ δ = α− µαδ. (13)

▶ It is known that the affine Weyl group is decomposed into a semi-direct product of
translations in the lattice part M and the finite Weyl group W0 acting on M, i.e.
W = M ⋊W0. The lattice part M acts on C(α) as a shift operator, thanks to (13).

▶ Consider the set of elements fi ∈ R, i ∈ I , which we will often call functions or variables.
▶ We propose an extension of the representation of W on C(α) to the skew field C(α, f ) of

rational functions in αi and elements fi , i ∈ I . One needs to specify the action of si on fj in
such a way that the automorphisms si on C(α, f ) preserve the Weyl group structure.

Remark 1. Such classes of representations arise naturally from Bäcklund transformations of
the differential Painlevé equations (e.g., see the review [Grammaticos and Ramani, 2004]).

▶ For each µ ∈ M we define a set of elements Fµ,i (α, f ) ∈ C(α, f ) by

tµ(fi ) = Fµ,i (α, f ). (14)

This set can be considered as a non-commutative discrete dynamical system.

Remark 2. Sometimes it is necessary to work with an extended Weyl group W̃ . A similar
description of the discrete dynamics can be given for W̃ as well.
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NC d-Painlevé equations: from “continuous” to discrete

▶ Thanks to the paper [Bershtein et al., 2023], we know that matrix Hamiltonian Painlevé
systems of all types have Bäcklund transformations forming an affine Weyl group structure.

▶ We have reconstructed all the generators for the extended affine Weyl groups corresponding
to the NC Hamiltonian systems obtained in [Bobrova and Sokolov, 2023a].

▶ By using the translation operators similar to those presented in the papers [Sakai, 2001]
or [Kajiwara et al., 2017], we have obtained a list of non-commutative discrete systems.

▶ They might be regarded as non-commutative analogs for the d-Painlevé systems.
▶ Note that they are connected by the degeneration procedure as follows

d-P(D5)′

d-P(D5)

d-P(E6)

d-P(D6)

d-P(D4) d-P(E7)

d-P(D7)

Remark. The d-P(E6) and d-P(D6) systems have a continuous limit to the P2 system and its
another non-equivalent version, respectively. The latter is a subcase of the system derived
in [Adler and Sokolov, 2021] and labeled by P2

2.
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NC dressing chains and related discrete systems



NC dressing chains

Remark. The commutative dressing chain was introduced in [Veselov and Shabat, 1993]. It is
related to the Painlevé equations [Adler, 1994] and arises from a generalisation of the symmetries
for the P4 and P5 systems [Noumi and Yamada, 2000]. Quantum dressing chain might be found
in [Nagoya, 2004]. Here we do not (!) assume any relations for the elements fi .

▶ Let j ∈ Z/
(n + 1)Z. Consider the systems for n = 2l and n = 2l + 1, l ∈ Z≥0, respectively

ḟj =
∑

1≤r≤l

fj fj+2r−1 −
∑

1≤r≤l

fj+2r fj + αj ; A
(1)
2l

1
2 t ḟj =

∑
1≤r≤s≤l

fj fj+2r−1 fj+2s −
∑

1≤r≤s≤l

fj+2r fj+2s+1 fj

+
(

1
2 −

∑
1≤r≤l

αj+2r

)
fj + αj

∑
1≤r≤l

fj+2r .

A
(1)
2l+1

▶ We will cal them A
(1)
n , n ≥ 2 type systems or dressing chains in the Noumi-Yamada variables.

▶ These systems admit Lax pairs.
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Lax pairs

▶ Let Ψ = Ψ(λ, t) ∈ Matn+1(R), λ ∈ Z(R) satisfy the linear system{
∂λΨ(λ, t) = A(λ, t)Ψ(λ, t),

∂tΨ(λ, t) = B(λ, t)Ψ(λ, t),
(15)

where matrices A = A(λ, t) and B = B(λ, t) belong to Matn+1(R) and have the form

A(λ) = A0 + A−1 λ
−1, B(λ) = B1 λ+ B0. (16)

▶ Consider the matrices expressed in terms of the standard unit matrices Er,s ∈ Matn+1(C) as

A0 = E1,n + f0 E1,n+1 + E2,n+1, A−1 =
∑

1≤r≤n+1

βr Er,r +
∑

1≤r≤n

fr Er+1,r +
∑

1≤r≤n−1

Er+2,r ,

B1 = E1,n+1, B0 =
∑

1≤r≤n+1

gr Er,r +
∑

1≤r≤n

Er+1,r .

▶ Let α0 = 1 + βn+1 − β1, αj = βj − βj+1, j ∈ Z/
(n + 1)Z \ {0}.

Theorem. [Bobrova, 2024] There exists a set of the g -functions such that the compati-
bility condition of system (15) is equivalent to either the A

(1)
2l or A

(1)
2l+1 system.

▶ For the A
(1)
2l , we have gj = −

∑
1≤r≤l fj+2r , where indexes belong to Z/

(n + 1)Z.
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▶ For the A
(1)
2l , we have gj = −

∑
1≤r≤l fj+2r , where indexes belong to Z/

(n + 1)Z.
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Bäcklund transformations and NC discrete dynamics

▶ Let the Cartan matrix C be of type A
(1)
n , n ≥ 2 and I = {0, 1, . . . , n}.

▶ Let us set

si (αi ) = −αi , si (αj ) = αj + αi (j = i ± 1), si (αj ) = αj (j ̸= i ± 1),

si (fi ) = fi , si (fj ) = fj ± αi f
−1
i (j = i ± 1), si (fj ) = fj (j ̸= i ± 1),

π(αj ) = αj+1, π(fj ) = fj+1, j ∈ Z/
(n + 1)Z.

Theorem. [Bobrova, 2024] Transformations given above are Bäcklund transformations
of the A

(1)
2l and A

(1)
2l+1 systems. Moreover, they define a birational representation of the

extended affine Weyl group of type A
(1)
n , n ≥ 2.

▶ Note that the shift operators are given by

T1 = π sn sn−1 . . . s1, T2 = s1 π sn . . . s2, . . . , Tn+1 = sn . . . s1 π. (17)

▶ They satisfy the relation T1 T2 . . . Tn+1 = 1.
▶ Thus, any n of them form a basis for the lattice and we can define a discrete system.

Remark. Cases n = 2 and n = 3 correspond to the P4 and P5 equations and discrete systems
labeled by d-P(E6) and d-P(D5) respectively. For n = 1 one needs to consider the P2 system.
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Further questions

A study of the NC d-Painlevé equations
▶ We expect that these equations admit Lax pairs and have a Hamiltonian form.
▶ We also expect that they have a continuous limit to known NC "differential" Painlevé

systems obtained in [Bobrova and Sokolov, 2023b].
▶ Commutative d- and differential Painlevé equations are related to the orthogonal

polynomials [Van Assche, 2022]. Orthogonal polynomials have a non-commutative analog
(see [Gelfand et al., 1995]). We assume that our equations are connected with them.

Other discrete Painlevé equations
▶ Our method can be applied to the q-discrete Painlevé equations.
▶ In particular, one may define a NC version of the q-P6 equation which generalizes the matrix

equation obtained in [Kawakami, 2020] to the purely non-commutative case.
(an ongoing project)

▶ What about a non-commutative ell-discrete Painlevé equation?
(see also [Okounkov and Rains, 2015])

NC geometry related to Painlevé equations
▶ What is the Okamoto space of initial data of NC "differential" Painlevé equations?
▶ We would like to generalize the method of Painlevé equations’ classification introduced in

Sakai’s paper [Sakai, 2001]. Recent developments might be found in [Rains, 2019].

Cluster algebras and discrete Painlevé equations
▶ It is known that discrete Painlevé equations are connected with cluster algebras (see,

e.g. [Bershtein et al., 2018]). Might we have the same connection in a NC case?
15 / 15



Many thanks!
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Journal of Physics A: Mathematical and Theoretical, 50(7):073001.
arXiv:1509.08186.

https://iopscience.iop.org/article/10.1088/0951--7715/27/9/2321
https://doi.org/10.1017/CBO9781139087193
https://projecteuclid.org/journals/acta--mathematica/volume--33/issue--none/Sur--les--%c3%a9quations--diff%c3%a9rentielles--du--second--ordre--et--du--premier/10.1007/BF02393211.full
https://arxiv.org/abs/hep-th/9407124v1
https://link.springer.com/chapter/10.1007/978--3--540--40357--9_7
https://doi.org/10.1088/1751--8121/50/7/073001
https://arxiv.org/abs/1509.08186


References IV

[Kawakami, 2015] Kawakami, H. (2015).
Matrix Painlevé systems.
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Quantum Painlevé systems of type A
(1)
l

.

International Journal of Mathematics, 15(10):1007–1031.
arXiv:math/0402281v2 .

[Noumi and Yamada, 1998] Noumi, M. and Yamada, Y. (1998).
Affine Weyl groups, discrete dynamical systems and Painlevé equations.
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