Geometry, Arithmetic and Differential Equations of Periods (GADEPs)

 

 

Geometry, Arithmetic and Differential Equations of Periods (GADEPs)

Fridays 10:30 (Rio de Janeiro's time), 21:30 (Beijing Time)

Organizers: Hossein Movasati, Younes Nikdelan
Invited Organizer: Jin Cao (03/2023-12/2023)
Past invited organizers: Tiago Fonseca (02/2021-11/2021), Roberto Villaflor (03/2022-06/2022)

 

 

M. Picard a donné à ces integrales le nom de périodes; je ne saurais l'en blâmer puisque cette dénomination lui a permis d'exprimer dans un langage plus concis les intéressants résultats auxquels il est parvenu. Mais je crois qu'il serait fâcheux qu'elle s'introduisit définitivement dans la science et qu'elle serait propre à engendrer de nombreuses confusions, H. Poincaré's remarks on the name period used for integrals, Acta Mathematica, 1887 page 323.

 

This seminar is about all confusions around periods (a bad but already established name). The talks are available in the YouTube Channel. And the detailed info. of Zoom is as below:

Zoom ID:  559 700 6085

Passcode: BIMSA

 

Schedule

 

 2023-03-17 Fri

 

Title: On attractor points on the moduli space of Calabi-Yau threefolds

Speaker: Emanuel Scheidegger

Zoom: 559 700 6085

Password: BIMSA

Abstract: 

We briefly review the origin in physics of attractor points on the moduli space of Calabi-Yau threefolds. We turn to their mathematical interpretation as special cases of Hodge loci. This leads to fascinating conjectures on the modularity of the Calabi-Yau threefolds at these points in terms of their periods and L-functions. For hypergeometric one-parameter families of Calabi-Yau threefolds, these conjectures can be verified at least numerically to very high precision. 

 

 2023-02-17 Fri

 

Title: Nodes and the Hodge conjecture

Speaker: Richard Thomas (Imperial College, UK)

Zoom: 559 700 6085

Password: BIMSA

Abstract:  I'll summarise my old paper giving a simple inductive approach to the Hodge conjecture. The upshot is that -- given a middle dimensional (p,p) Hodge class -- instead of finding a codimension-p variety carrying it, we only need to find a codimension 1 hyperplane containing it.


 

Past Talks

https://w3.impa.br/~hossein/GADEPs/GADEPs.html