Graph Theory

Instructor: Benny Sudakov

Assignment 11

Unless noted otherwise, all graphs considered are simple. The solution of every problem should be no longer than one page.

Problem 1: Let G be a bipartite graph on n vertices. Prove that $\chi_{l}(G) \leq 1+\log _{2} n$ using the probabilistic method.

Problem 2: Let G be a complete r-partite graph with all parts of size 2. (In other words, G is $K_{2 r}$ minus a perfect matching.) Show, using a combination of induction and Hall's theorem, that $\chi_{l}(G)=r$.

Problem 3: How many spannng trees does $K_{r, s}$ have?
Problem 4: Find the number of spanning trees of $K_{n}-e$ (the complete graph on n vertices with one edge removed) in two different ways:
(a) using the Matrix Tree Theorem, and
(b) using a double counting argument.

