Graph Theory

Instructor: Benny Sudakov

Assignment 10

Unless noted otherwise, all graphs considered are simple. The solution of every problem should be no longer than one page.

Problem 1: If G arises from a k-regular graph with 2m + 1 vertices by deleting fewer than k/2 edges, then $\chi'(G) > \Delta(G)$.

Problem 2: Let G be a connected k-regular bipartite graph with $k \ge 2$. Using that edgechromatic number of G is k, show that G is 2-connected.

Problem 3: Prove that every graph G of maximum degree Δ has an equitable proper $(\Delta + 1)$ edge-coloring, i.e. one where each color class contains $\lfloor e/(\Delta + 1) \rfloor$ or $\lceil e/(\Delta + 1) \rceil$ edges, where
e is the number of edges in G.

Problem 4: The Cartesian product $H \times G$ of graphs H and G is the graph with vertex set $V(H) \times V(G)$, with an edge between (v, u) and (v', u') if v = v' and u is adjacent to u' in G, or if u = u' and v is adjacent to v' in H. Prove that if $\chi'(H) = \Delta(H) \ge 1$ then $\chi'(H \times G) = \Delta(H \times G)$.