Graph Theory

Instructor: Benny Sudakov

Assignment 9

Unless noted otherwise, all graphs considered are simple. The solution of every problem should be no longer than one page.

Problem 1: Let $G_{1}, G_{2}, \ldots, G_{100}$ be 100 planar graphs on the same vertex set V, with edge sets $E_{1}, E_{2}, \ldots, E_{100}$, respectively, and consider the graph $G=\left(V, \bigcup_{i=1}^{100} E_{i}\right)$ which is the union of the graphs $G_{1}, G_{2}, \ldots, G_{100}$. Prove that $\chi(G) \leq 600$.

Problem 2: For a given natural number n, let G_{n} be the following graph with $\binom{n}{2}$ vertices and $\binom{n}{3}$ edges: the vertices are the pairs (x, y) of integers with $1 \leq x<y \leq n$, and for each triple (x, y, z) with $1 \leq x<y<z \leq n$, there is an edge joining vertex (x, y) to vertex (y, z). Show that for any natural number k, the graph G_{n} is triangle-free and has chromatic number $\chi\left(G_{n}\right)>k$ provided $n>2^{k}$.

Problem 3:

(a) Prove that $2 \sqrt{n} \leq \chi(G)+\chi(\bar{G})$ for any graph G.
(b) Let T_{1}, T_{2} and T_{3} be three edge-disjoint spanning trees on the same vertex set. Prove that their union is 6 -vertex-colourable.

