Graph Theory

Instructor: Benny Sudakov

Assignment 6

Unless noted otherwise, all graphs considered are simple. The solution of every problem should be no longer than one page.

Problem 1: Let A be a finite set with subsets A_{1}, \ldots, A_{n}, and let d_{1}, \ldots, d_{n} be positive integers. Show that there are disjoint subsets $D_{k} \subseteq A_{k}$ with $\left|D_{k}\right|=d_{k}$ for all $k \in[n]$ if and only if

$$
\left|\cup_{i \in I} A_{i}\right| \geq \sum_{i \in I} d_{i}
$$

for all $I \subseteq[n]$.
Problem 2: Suppose M is a matching in a bipartite graph $G=(A \cup B, E)$. We say that a path $P=a_{1} b_{1} \cdots a_{k} b_{k}$ is an augmenting path in G if $b_{i} a_{i+1} \in M$ for all $i \in[k-1]$ and a_{1} and b_{k} are not covered by M. The name comes from the fact that the size of M can be increased by flipping the edges along P (in other words, taking the symmetric difference of M and P): by deleting the edges $b_{i} a_{i+1}$ from M and adding the edges $a_{i} b_{i}$ instead.
(a) Prove Hall's theorem by showing that if Hall's condition is satisfied and M does not cover A, then there is an augmenting path in G.
(b) Show that if M is not a maximum matching (i.e. there is a larger matching in G) then the graph contains an augmenting path. Is this true for non-bipartite graphs as well?

Problem 3: Show that for $k \geq 1$, every k-regular $(k-1)$-edge-connected graph on an even number of vertices contains a perfect matching.

Problem 4: An $n \times n$ matrix $A=\left(a_{i, j}\right)$ is called doubly stochastic if all entries are nonnegative and the sum of every row and every column is 1 . Show that if A is doubly stochastic then there is a permutation $\sigma:[n] \rightarrow[n]$ such that $a_{i, \sigma(i)}>0$ for every $1 \leq i \leq n$.

