Graph Theory

Instructor: Benny Sudakov

Assignment 4

Unless noted otherwise, all graphs considered are simple. The solution of every problem should be no longer than one page.

Problem 1: Let G be a k-connected graph, where $k \ge 2$. Show that if $|V(G)| \ge 2k$ then G contains a cycle of length at least 2k.

Problem 2: Let $k \ge 2$ be an integer. Show that if G = (V, E) is a k-vertex-connected graph, then for any k-vertex subset $U \subseteq V$ there is a cycle C in G such that $U \subseteq V(C)$.

Problem 3: Show that if k > 0 then the edge set of any connected graph with 2k vertices of odd degree can be split into k trails.

Problem 4: Let G be a connected graph that has an Euler tour. Prove or disprove the following statements.

- (a) If G is bipartite then it has an even number of edges.
- (b) If G has an even number of vertices then it has an even number of edges.
- (c) For edges e and f sharing a vertex, G has an Euler tour in which e and f appear consecutively.