Graph Theory

Instructor: Benny Sudakov

Assignment 3

Unless noted otherwise, all graphs considered are simple. The solution of every problem should be no longer than one page.

Problem 1: Let G be a graph and suppose some two vertices $u, v \in V(G)$ are separated by $X \subseteq V(G) \backslash\{u, v\}$. Show that X is a minimal separating set (i.e. there is no proper subset $Y \subsetneq X$ that separates u and v) if and only if every vertex in X has a neighbor in the component of $G-X$ containing u and another in the component containing v.

Problem 2: Let $k \geq 1$. Show that if G is a graph with $|V(G)|=n \geq k+1$ and $\delta(G) \geq$ $(n+k-2) / 2$ then G is k-connected.

Problem 3: Prove that a graph G with at least 3 vertices is 2 -connected if and only if for any three vertices x, y, z there is a path from x to z containing y.

Problem 4: Given a graph $G=(V, E)$, the square of G is the graph G^{2} obtained from G by adding to it all the edges between vertices at distance 2. For example, if

(a) Show that if G is connected and $|V(G)| \geq 3$ then G^{2} is 2-connected.
(b) For every $n \geq 6$, determine $\kappa\left(G^{2}\right)$ in the case where G is a cycle with n vertices.

