Graph Theory

Instructor: Benny Sudakov

Assignment 3

Unless noted otherwise, all graphs considered are simple. The solution of every problem should be no longer than one page.

Problem 1: Let G be a graph and suppose some two vertices $u, v \in V(G)$ are separated by $X \subseteq V(G) \setminus \{u, v\}$. Show that X is a minimal separating set (i.e. there is no proper subset $Y \subsetneq X$ that separates u and v) if and only if every vertex in X has a neighbor in the component of G - X containing u and another in the component containing v.

Problem 2: Let $k \ge 1$. Show that if G is a graph with $|V(G)| = n \ge k+1$ and $\delta(G) \ge (n+k-2)/2$ then G is k-connected.

Problem 3: Prove that a graph G with at least 3 vertices is 2-connected if and only if for any three vertices x, y, z there is a path from x to z containing y.

Problem 4: Given a graph G = (V, E), the square of G is the graph G^2 obtained from G by adding to it all the edges between vertices at distance 2. For example, if

- (a) Show that if G is connected and $|V(G)| \ge 3$ then G^2 is 2-connected.
- (b) For every $n \ge 6$, determine $\kappa(G^2)$ in the case where G is a cycle with n vertices.