Graph Theory

Instructor: Benny Sudakov

Assignment 2

Unless noted otherwise, all graphs considered are simple. The solution of every problem should be no longer than one page.

Problem 1: Show that in a tree containing an even number of edges, there is at least one vertex with even degree.

Problem 2: Given a graph G and a vertex $v \in V(G)$, G - v denotes the subgraph of G induced by the vertex set $V(G) \setminus \{v\}$. Show that every connected graph G of order at least two contains vertices x and y such that both G - x and G - y are connected.

Problem 3: Let T be a tree with exactly 2k odd-degree vertices. Prove that T decomposes into k paths (i.e. its edge-set is the disjoint union of k paths).

Problem 4: Prove that a connected graph G is a tree if and only if any family of pairwise (vertex-)intersecting paths P_1, \ldots, P_k in G have a common vertex. **Problem 5:**

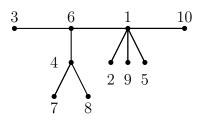
(a) Describe which Prüfer codes correspond to stars (i.e. to trees isomorphic to $K_{1,n-1}$).

(b) Describe what trees correspond to Prüfer codes containing exactly 2 different values.

Problem 6: Let T be a forest on vertex set [n] with components T_1, \ldots, T_r . Prove, by induction on r, that the number of spanning trees on [n] containing T is $n^{r-2} \prod_{i=1}^r |T_i|$. Deduce Cayley's formula.

Problem 7:

(a) What is the Prüfer code of the following tree? What is the map associated with it in Joyal's proof with left end 4 and right end 5?



(b) Which labeled tree has Prüfer code (5,1,1,7,7,5)?