Path homology and join of digraphs

Alexander Grigor'yan
University of Bielefeld

Workshop "Advances in Homotopy Theory II", May 2-4, 2022
Based on joint work with Y. Lin, Y.Muranov, X.-X. Tang and S.-T.Yau

Contents

1 Path homology of digraphs 2
1.1 Paths in a finite set 2
1.2 Chain complex and path homology of a digraph 5
1.3 Examples of ∂-invariant paths 7
1.4 Homology groups 9
1.5 Examples of spaces Ω_{p} and H_{p} 10
2 A join of two digraphs and the Künneth formula 13
3 A generalized join of digraphs 17
4 Homology of a monotone linear join 19
5 Homology of linear and cyclic joins 24
6 Homology of a generalized join 33

1 Path homology of digraphs

1.1 Paths in a finite set

Let V be a finite set. For any $p \geq 0$, an elementary p-path is any sequence i_{0}, \ldots, i_{p} of $p+1$ vertices of V.
Fix a field \mathbb{K} and denote by $\Lambda_{p}=\Lambda_{p}(V, \mathbb{K})$ the \mathbb{K}-linear space that consists of all formal \mathbb{K}-linear combinations of elementary p-paths in V. Any element of Λ_{p} is called a p-path. An elementary p-path i_{0}, \ldots, i_{p} as an element of Λ_{p} will be denoted by $e_{i_{0} \ldots i_{p}}$. For example, we have

$$
\Lambda_{0}=\left\langle e_{i}: i \in V\right\rangle, \quad \Lambda_{1}=\left\langle e_{i j}: i, j \in V\right\rangle, \quad \Lambda_{2}=\left\langle e_{i j k}: i, j, k \in V\right\rangle, \quad \text { etc }
$$

Define also an elementary (-1)-path as the unity e of \mathbb{K} so that

$$
\Lambda_{-1}=\langle e\rangle=\mathbb{K}
$$

Any p-path u can be written in a form

$$
u=\sum_{i_{0}, i_{1}, \ldots, i_{p} \in V} u^{i_{0} i_{1} \ldots i_{p}} e_{i_{0} i_{1} \ldots i_{p}}
$$

where $u^{i_{0} i_{1} \ldots i_{p}} \in \mathbb{K}$.
Definition. Define for any $p \geq 0$ a linear boundary operator $\partial: \Lambda_{p} \rightarrow \Lambda_{p-1}$ by

$$
\partial e_{i_{0} \ldots i_{p}}=\sum_{q=0}^{p}(-1)^{q} e_{i_{0} \ldots \hat{i_{q} \ldots i_{p}}},
$$

where ${ }^{\wedge}$ means omission of the index.
For example,

$$
\partial e_{i}=e, \quad \partial e_{i j}=e_{j}-e_{i}, \partial e_{i j k}=e_{j k}-e_{i k}+e_{i j}, \quad \text { etc. }
$$

Lemma $1.1 \partial^{2}=0$.
Proof. Indeed, for any $p \geq 1$ we have

$$
\begin{aligned}
\partial^{2} e_{i_{0} \ldots i_{p}} & =\sum_{q=0}^{p}(-1)^{q} \partial e_{i_{0} \ldots \hat{\hat{q}_{q}} \ldots i_{p}}=\sum_{q=0}^{p}(-1)^{q}\left(\sum_{r=0}^{q-1}(-1)^{r} e_{i_{0} \ldots \hat{i_{r}} \ldots \hat{i}_{q} \ldots i_{p}}+\sum_{r=q+1}^{p}(-1)^{r-1} e_{i_{0} \ldots \hat{\hat{i}_{q} \ldots \hat{r_{r}} \ldots i_{p}}}\right) \\
& =\sum_{0 \leq r<q \leq p}(-1)^{q+r} e_{i_{0} \ldots \hat{i_{r}} \ldots \hat{i}_{q} \ldots i_{p}}-\sum_{0 \leq q<r \leq p}(-1)^{q+r} e_{i_{0} \ldots \hat{q_{q}} \ldots \hat{i_{r} \ldots i_{p}}} .
\end{aligned}
$$

After switching q and r in the last sum we see that the two sums cancel out, whence $\partial^{2} e_{i_{0} \ldots i_{p}}=0$. This implies $\partial^{2} u=0$ for all $u \in \Lambda_{p}$.
Hence, we obtain a chain complex $\Lambda_{*}(V)$:

$$
0 \leftarrow \Lambda_{-1} \stackrel{\partial}{\leftarrow} \Lambda_{0} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Lambda_{p-1} \stackrel{\partial}{\leftarrow} \Lambda_{p} \stackrel{\partial}{\leftarrow} \ldots
$$

Definition. An elementary p-path $e_{i_{0} \ldots i_{p}}$ is called regular if $i_{k} \neq i_{k+1}$ for all $k=0, \ldots, p-1$, and irregular otherwise.

Let I_{p} be the subspace of Λ_{p} spanned by irregular $e_{i_{0} \ldots i_{p}}$. We claim that $\partial I_{p} \subset I_{p-1}$. Indeed, if $e_{i_{0} \ldots i_{p}}$ is irregular then $i_{k}=i_{k+1}$ for some k. We have

$$
\begin{align*}
\partial e_{i_{0} \ldots i_{p}}= & e_{i_{1} \ldots i_{p}}-e_{i_{0} i_{2} \ldots i_{p}}+\ldots \\
& +(-1)^{k} e_{i_{0} \ldots i_{k-1} i_{k+1} i_{k+2} \ldots i_{p}}+(-1)^{k+1} e_{i_{0} \ldots i_{k-1} i_{k} i_{k+2} \ldots i_{p}} \tag{1.1}\\
& +\ldots+(-1)^{p} e_{i_{0} \ldots i_{p-1}} .
\end{align*}
$$

By $i_{k}=i_{k+1}$ the two terms in the middle line of (1.1) cancel out, whereas all other terms are non-regular, whence $\partial e_{i_{0} \ldots i_{p}} \in I_{p-1}$.

Hence, ∂ is well-defined on the quotient spaces $\mathcal{R}_{p}:=\Lambda_{p} / I_{p}$, and we obtain the chain complex $\mathcal{R}_{*}(V)$:

$$
0 \leftarrow \mathcal{R}_{0} \stackrel{\partial}{\leftarrow} \mathcal{R}_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \mathcal{R}_{p-1} \stackrel{\partial}{\leftarrow} \mathcal{R}_{p} \stackrel{\partial}{\leftarrow} \ldots
$$

By setting all irregular p-paths to be equal to 0 , we can identify \mathcal{R}_{p} with the subspace of Λ_{p} spanned by all regular paths. For example, if $i \neq j$ then $e_{i j i} \in \mathcal{R}_{2}$ and

$$
\partial e_{i j i}=e_{j i}-e_{i i}+e_{i j}=e_{j i}+e_{i j}
$$

because $e_{i i}=0$.

1.2 Chain complex and path homology of a digraph

Definition. A digraph (directed graph) is a pair $G=(V, E)$ of a set V of vertices and a set $E \subset\{V \times V \backslash$ diag $\}$ of arrows (directed edges). If $(i, j) \in E$ then we write $i \rightarrow j$.

Definition. Let $G=(V, E)$ be a digraph. An elementary p-path $i_{0} \ldots i_{p}$ on V is called allowed if $i_{k} \rightarrow i_{k+1}$ for any $k=0, \ldots, p-1$, and non-allowed otherwise.

Let $\mathcal{A}_{p}=\mathcal{A}_{p}(G)$ be \mathbb{K}-linear space spanned by allowed elementary p-paths:

$$
\mathcal{A}_{p}=\left\langle e_{i_{0} \ldots i_{p}}: i_{0} \ldots i_{p} \text { is allowed }\right\rangle
$$

The elements of \mathcal{A}_{p} are called allowed p-paths. Since any allowed path is regular, we have $\mathcal{A}_{p} \subset \mathcal{R}_{p}$.

We would like to build a chain complex based on subspaces \mathcal{A}_{p} of \mathcal{R}_{p}. However, the spaces \mathcal{A}_{p} are in general not invariant for ∂. For example, in the digraph

we have $e_{a b c} \in \mathcal{A}_{2}$ but $\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b} \notin \mathcal{A}_{1}$ because $e_{a c}$ is not allowed.
Definition. A p-path u is called ∂-invariant if $u \in \mathcal{A}_{p}$ and $\partial u \in \mathcal{A}_{p-1}$.
The space of ∂-invariant paths is denoted by Ω_{p} :

$$
\Omega_{p}=\left\{u \in \mathcal{A}_{p}: \partial u \in \mathcal{A}_{p-1}\right\} .
$$

Important: $\partial \Omega_{p} \subset \Omega_{p-1}$. Indeed, $u \in \Omega_{p}$ implies $\partial u \in \mathcal{A}_{p-1}$ and $\partial(\partial u)=0 \in \mathcal{A}_{p-2}$, whence $\partial u \in \Omega_{p-1}$.
Hence, we obtain a chain complex $\Omega_{*}=\Omega_{*}(G)$:

$$
0 \leftarrow \Omega_{-1} \stackrel{\partial}{\leftarrow} \Omega_{0} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_{p} \stackrel{\partial}{\leftarrow} \ldots
$$

Note that $\Omega_{-1}=\mathbb{K}, \Omega_{0}=\mathcal{A}_{0}=\left\langle e_{i}, i \in V\right\rangle$ and $\Omega_{1}=\mathcal{A}_{1}=\left\langle e_{i j}, i \rightarrow j\right\rangle$, while in general $\Omega_{p} \subset \mathcal{A}_{p}$.

1.3 Examples of ∂-invariant paths

A triangle is a sequence of three vertices a, b, c such that

$$
a \rightarrow b \rightarrow c, a \rightarrow c
$$

It determines 2-path $e_{a b c} \in \Omega_{2}$ because $e_{a b c} \in \mathcal{A}_{2}$ and

$$
\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b} \in \mathcal{A}_{1} .
$$

A square is a sequence of four vertices a, b, b^{\prime}, c such that

$$
a \rightarrow b, b \rightarrow c, a \rightarrow b^{\prime}, b^{\prime} \rightarrow c
$$

It determines a 2-path

$$
u=e_{a b c}-e_{a b^{\prime} c} \in \Omega_{2}
$$

because $u \in \mathcal{A}_{2}$ and

$$
\begin{aligned}
\partial u & =\left(e_{b c}-\underline{e_{a c}}+e_{a b}\right)-\left(e_{b^{\prime} c}-\underline{e_{a c}}+e_{a b^{\prime}}\right) \\
& =e_{a b}+e_{b c}-e_{a b^{\prime}}-e_{b^{\prime} c} \in \mathcal{A}_{1} \underline{ }
\end{aligned}
$$

In general, Ω_{2} has a basis that consists of triangles and squares and double arrows $e_{a b a}$.

A p-simplex (or p-clique) is a sequence of $p+1$ vertices, say, $0,1, \ldots, p$, such that

$$
i \rightarrow j \Leftrightarrow i<j
$$

It determines a p-path $e_{01 \ldots p} \in \Omega_{p}$.
1 -simplex is $\bullet \rightarrow$, 2 -simplex is a triangle.
Here is a 3 -simplex:

A 3 -cube is a sequence of 8 vertices $0,1,2,3,4,5,6,7$, connected by arrows as here:
It determines a ∂-invariant 3 -path

$$
u=e_{0237}-e_{0137}+e_{0157}-e_{0457}+e_{0467}-e_{0267} \in \Omega_{3}
$$

because $u \in \mathcal{A}_{3}$ and

$$
\begin{aligned}
\partial u= & \left(e_{013}-e_{023}\right)+\left(e_{157}-e_{137}\right)+\left(e_{237}-e_{267}\right) \\
& -\left(e_{046}-e_{026}\right)-\left(e_{457}-e_{467}\right)-\left(e_{015}-e_{045}\right) \in \mathcal{A}_{2}
\end{aligned}
$$

1.4 Homology groups

Alongside the chain complex

$$
\begin{equation*}
0 \stackrel{\partial}{\leftarrow} \Omega_{-1} \stackrel{\partial}{\leftarrow} \Omega_{0} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_{p} \stackrel{\partial}{\leftarrow} \ldots \tag{1.2}
\end{equation*}
$$

consider also a truncated chain complex

$$
\begin{equation*}
0 \stackrel{\partial}{\leftarrow} \Omega_{0} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_{p} \stackrel{\partial}{\leftarrow} \ldots \tag{1.3}
\end{equation*}
$$

The homology groups of (1.3) are called the path homology groups of the digraph G and denoted by H_{p}, that is,

$$
H_{p}=\left.\operatorname{ker} \partial\right|_{\Omega_{p}} /\left.\operatorname{Im} \partial\right|_{\Omega_{p+1}}
$$

The homology groups of (1.2) are called the reduced path homology groups of G and are denoted by \widetilde{H}_{p}. We have

$$
\widetilde{H}_{p}=H_{p} \text { for } p \geq 1 \text { and } \widetilde{H}_{0}=H_{0} / \mathbb{K}
$$

Define the Betti numbers $\beta_{p}=\operatorname{dim} H_{p}$ and the reduced Betti numbers $\widetilde{\beta}_{p}=\operatorname{dim} \widetilde{H}_{p}$ so that

$$
\widetilde{\beta}_{p}=\beta_{p} \text { for } p \geq 1 \text { and } \widetilde{\beta}_{0}=\beta_{0}-1
$$

It is known that β_{0} is equal to the number of connected components of G. In particular, if G is connected then $\widetilde{\beta}_{0}=0$.

If $G=X \sqcup Y$ - a disjoin union of two digraphs X, Y then

$$
\beta_{r}(X \sqcup Y)=\beta_{r}(X)+\beta_{r}(Y)
$$

and

$$
\widetilde{\beta}_{r}(X \sqcup Y)=\widetilde{\beta}_{r}(X)+\widetilde{\beta}_{r}(Y)+\mathbf{1}_{\{r=0\}} .
$$

1.5 Examples of spaces Ω_{p} and H_{p}

In what follows, for a vector space S over \mathbb{K} we write $|S|=\operatorname{dim}_{\mathbb{K}} S$.
A linear digraph of n vertices:
$\left|\Omega_{0}\right|=n, \quad\left|\Omega_{1}\right|=n-1$,
$\Omega_{p}=\{0\}$ for $p \geq 2$,
$\widetilde{H}_{p}=\{0\}$ for all $p \geq 0$.

A triangle as a digraph:
$\Omega_{1}=\left\langle e_{01}, e_{02}, e_{12}\right\rangle, \quad \Omega_{2}=\left\langle e_{012}\right\rangle, \quad \Omega_{p}=\{0\}$ for $p \geq 3$

$$
\left.\operatorname{ker} \partial\right|_{\Omega_{1}}=\left\langle e_{01}-e_{02}+e_{12}\right\rangle
$$

but $\quad e_{01}-e_{02}+e_{12}=\partial e_{012}$

so that $H_{1}=\{0\}$. We have $\widetilde{H}_{p}=\{0\}$ for all $p \geq 0$.

A square as a digraph:

$$
\begin{aligned}
& \Omega_{1}=\left\langle e_{01}, e_{02}, e_{13}, e_{23}\right\rangle, \quad \Omega_{2}=\left\langle e_{013}-e_{023}\right\rangle, \quad \Omega_{p}=\{0\} \text { for } p \geq 3 \\
& \left.\quad \operatorname{ker} \partial\right|_{\Omega_{1}}=\left\langle e_{01}+e_{13}-e_{02}-e_{23}\right\rangle \\
& \text { but } \quad e_{01}+e_{13}-e_{02}-e_{23}=\partial\left(e_{013}-e_{023}\right) \\
& \text { so that } H_{1}=\{0\} \text {. We have } \widetilde{H}_{p}=\{0\} \text { for all } p \geq 0 .
\end{aligned}
$$

A hexagon: $\left|\Omega_{0}\right|=\left|\Omega_{1}\right|=6, \Omega_{p}=\{0\}$ for all $p \geq 2$.
$H_{1}=\left\langle e_{01}-e_{21}+e_{23}+e_{34}-e_{54}+e_{50}\right\rangle, \quad \widetilde{H}_{p}=\{0\}$ for $p \neq 1$.
The same is true for any cyclic digraph (directed polygon) that is neither triangle nor square:

$$
\left|H_{1}\right|=1 \text { and } \widetilde{H}_{p}=\{0\} \text { for all } p \neq 1
$$

Octahedron: $\left|\Omega_{0}\right|=6, \quad\left|\Omega_{1}\right|=12$
Space Ω_{2} is spanned by 8 triangles:
$\Omega_{2}=\left\langle e_{024}, e_{034}, e_{025}, e_{035}, e_{124}, e_{134}, e_{125}, e_{135}\right\rangle$,
$\left|\Omega_{2}\right|=8, \Omega_{p}=\{0\}$ for all $p \geq 3$
$H_{2}=\left\langle e_{024}-e_{034}-e_{025}+e_{035}-e_{124}+e_{134}+e_{125}-e_{135}\right\rangle$
$\left|H_{2}\right|=1, \quad \widetilde{H}_{p}=\{0\}$ for all $p \neq 2$.

A 3-cube with $\left|\Omega_{0}\right|=8, \quad\left|\Omega_{1}\right|=12$.

$$
\begin{aligned}
\Omega_{2} & =\left\langle e_{013}-e_{023}, e_{015}-e_{045}, e_{026}-e_{046},\right. \\
& \left.e_{137}-e_{157}, e_{237}-e_{267}, e_{457}-e_{467}\right\rangle \\
\Omega_{3} & =\left\langle e_{0237}-e_{0137}+e_{0157}-e_{0457}+e_{0467}-e_{0267}\right\rangle \\
\Omega_{p} & =\{0\} \text { for all } p \geq 4 \\
\widetilde{H}_{p} & =\{0\} \text { for all } p \geq 0 .
\end{aligned}
$$

2 A join of two digraphs and the Künneth formula

Given two digraphs X, Y, define their join $X * Y$ as follows: take first a disjoint union $X \sqcup Y$ and add arrows from any vertex of X to any vertex of Y.

For example,
$\{0,1\} *\{2,3\}=\begin{array}{lllllll}3 & \leftarrow & 1 \\ \uparrow & \downarrow \\ 0 & \rightarrow & 2\end{array}$ and $\begin{array}{llll} & \leftarrow & 1 \\ \uparrow & \\ 0 & \rightarrow & 2\end{array} *\{4,5\}=$

Define the join $u v$ of p-path u on X and q-path v on Y as a $(p+q+1)$-path on $X * Y$ as follows: first define it for elementary paths by

$$
e_{i_{0} \ldots i_{p}} e_{j_{0} \ldots j_{q}}=e_{i_{0} \ldots i_{p} j_{0} \ldots j_{q}}
$$

and then extend this definition by linearity to all p-paths u on X and q-paths v on Y.

If u and v are allowed on X resp. Y then $u v$ is allowed on $Z=X * Y$.
Lemma 2.1 The join of paths satisfies the product rule

$$
\partial(u v)=(\partial u) v+(-1)^{p+1} u \partial v
$$

If $u \in \Omega_{p}(X)$ and $v \in \Omega_{q}(Y)$ then ∂u and ∂v are allowed, which implies that $\partial(u v)$ is also allowed, that is, $u v \in \Omega_{p+q+1}(Z)$. The product rule implies also that the join $u v$ is well defined for homology classes $u \in \widetilde{H}_{p}(X)$ and $v \in \widetilde{H}_{q}(Y)$ so that $u v \in \widetilde{H}_{p+q+1}(Z)$.

Theorem 2.2 (Künneth formula) We have the following isomorphism: for any $r \geq-1$,

$$
\begin{equation*}
\Omega_{r}(X * Y) \cong \bigoplus_{\{p, q \geq-1: p+q=r-1\}}\left(\Omega_{p}(X) \otimes \Omega_{q}(Y)\right) \tag{2.1}
\end{equation*}
$$

that is given by the map $u \otimes v \mapsto u v$ with $u \in \Omega_{p}(X)$ and $v \in \Omega_{q}(Y)$. Consequently, for any $r \geq 0$,

$$
\begin{align*}
& \widetilde{H}_{r}(X * Y) \cong \bigoplus_{\{p, q \geq 0: p+q=r-1\}} \tag{2.2}\\
& \widetilde{\beta}_{p}(X) \otimes \widetilde{H}_{q}(Y) \tag{2.3}\\
& \widetilde{\beta}_{r}(X) \cong \widetilde{\beta}_{p}(X) \widetilde{\beta}_{q}(Y) .
\end{align*}
$$

The identity (2.1) means that any paths in $\Omega_{r}(Z)$ can be obtained as linear combination of joins $u v$ where $u \in \Omega_{p}(X)$ and $v \in \Omega_{q}(Y)$ with $p+q+1=r$, and (2.2) means the same for homology classes.
Note that the operation $*$ of digraphs is associative. For a sequence X_{1}, \ldots, X_{l} of l digraphs we obtain by induction from (2.1), (2.2) and (2.3) that

$$
\begin{equation*}
\Omega_{r}\left(X_{1} * X_{2} * \ldots * X_{l}\right) \cong \bigoplus_{\left\{p_{i} \geq-1: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \Omega_{p_{1}}\left(X_{1}\right) \otimes \ldots \otimes \Omega_{p_{l}}\left(X_{l}\right) \tag{2.4}
\end{equation*}
$$

$$
\begin{align*}
\widetilde{H}_{r}\left(X_{1} * X_{2} * \ldots * X_{l}\right) & \cong \prod_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{H}_{p_{1}}\left(X_{1}\right) \otimes \ldots \otimes \widetilde{H}_{p_{l}}\left(X_{l}\right) \tag{2.5}\\
\widetilde{\beta}_{r}\left(X_{1} * X_{2} * \ldots * X_{l}\right) & =\sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1}\right) \ldots \widetilde{\beta}_{p_{l}}\left(X_{l}\right) . \tag{2.6}
\end{align*}
$$

Example. Consider an octahedron $Z=\underbrace{\{0,1\}}_{X_{1}} * \underbrace{\{2,3\}}_{X_{2}} * \underbrace{\{4,5\}}_{X_{3}}$. (see p. 13). Then

$$
\begin{aligned}
\Omega_{2}(Z) & =\bigoplus_{\left\{p_{i} \geq-1:\right.}^{\left.p_{1}+p_{2}+p_{3}=2-3+1\right\}} \\
& =\Omega_{0}\left(X_{1}\right) \otimes \Omega_{0}\left(X_{2}\right) \otimes \Omega_{p_{2}}\left(X_{2}\right) \otimes \Omega_{p_{3}}\left(X_{3}\right) \\
& =\left\langle e_{024}, e_{025}, e_{034}, e_{035}, e_{124}, e_{125}, e_{134}, e_{135}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
H_{2}(Z)=\widetilde{H}_{2}(Z) & =\bigoplus_{\left\{p_{i} \geq 0: p_{1}+p_{2}+p_{3}=2-3+1\right\}} \widetilde{H}_{p_{1}}\left(X_{1}\right) \otimes \widetilde{H}_{p_{2}}\left(X_{2}\right) \otimes \widetilde{H}_{p_{3}}\left(X_{3}\right) \\
& =\widetilde{H}_{0}\left(X_{1}\right) \otimes \widetilde{H}_{0}\left(X_{2}\right) \otimes \widetilde{H}_{0}\left(X_{3}\right)=\left\langle e_{0}-e_{1}\right\rangle \otimes\left\langle e_{2}-e_{3}\right\rangle \otimes\left\langle e_{4}-e_{5}\right\rangle \\
& =\left\langle e_{024}-e_{025}-e_{034}+e_{035}-e_{124}+e_{125}+e_{134}-e_{135}\right\rangle
\end{aligned}
$$

(see p. 12).

3 A generalized join of digraphs

Given a digraph G of l vertices $\{1,2, \ldots, l\}$ and a sequence $X=\left\{X_{1}, \ldots, X_{l}\right\}$ of l digraphs, define their generalized join $\left(X_{1} \ldots X_{l}\right)_{G}=X_{G}$ as follows: X_{G} is obtained from the disjoint union $\bigsqcup_{i} X_{i}$ of digraphs X_{i} by keeping all the arrows in each X_{i} and by adding arrows $x \rightarrow y$ whenever $x \in X_{i}, y \in X_{j}$ and $i \rightarrow j$ in G.

Digraph X_{G} is also referred to as a G-join of X_{1}, \ldots, X_{l}, and G is called the base of X_{G}.

The main problem to be discussed here is
how to compute the homology groups and Betti numbers of X_{G}.

Denote by K_{l} a complete digraph with vertices $\{1, \ldots, l\}$ and arrows

$$
i \rightarrow j \Leftrightarrow i<j
$$

that is, K_{l} is an $(l-1)$-simplex. For example, $K_{2}=\{1 \rightarrow 2\}$ and $K_{3}=1 \xrightarrow{2} 3$ is a triangle.

The digraph $X_{K_{l}}$ is called a complete join of X_{1}, \ldots, X_{l}. It is easy to see that

$$
X_{K_{l}}=X_{1} * X_{2} * \ldots * X_{l}
$$

It follows from (2.6) that, for any $r \geq 0$,

$$
\begin{equation*}
\widetilde{\beta}_{r}\left(X_{K_{l}}\right)=\sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1}\right) \ldots \widetilde{\beta}_{p_{l}}\left(X_{l}\right) . \tag{3.1}
\end{equation*}
$$

4 Homology of a monotone linear join

Denote by I_{l} a monotone linear digraph with the vertices $\{1, \ldots, l\}$ and arrows $i \rightarrow i+1$:

$$
\begin{equation*}
I_{l}=\{1 \rightarrow 2 \rightarrow \ldots \rightarrow l\} \tag{4.1}
\end{equation*}
$$

If $G=I_{l}$ then we use the following simplified notation:

$$
\left(X_{1} X_{2} \ldots X_{l}\right)_{I_{l}}=X_{1} X_{2} \ldots X_{l}
$$

and refer to this digraph as a monotone linear join of X_{1}, \ldots, X_{l}.
Clearly, $X_{1} X_{2} \ldots X_{n}$ can be constructed as follows: take first a disjoint union $\bigsqcup_{i=1}^{l} X_{i}$ and then add arrows from any vertex of X_{i} to any vertex of X_{i+1} (see p. 17).

In the case $l=2$ we obviously have $X_{1} X_{2}=X_{1} * X_{2}$ but in general $X_{1} X_{2} \ldots X_{l}$ is a subgraph of $X_{1} * X_{2} * \ldots * X_{l}$. For example, we have

$$
\{0\}\{1,2\}\{3\}=\begin{align*}
& 1 \tag{4.2}\\
& \uparrow
\end{aligned} \rightarrow \begin{aligned}
& 3 \\
& 0
\end{aligned} \rightarrow \begin{aligned}
& \\
& 0
\end{align*} \text { while } \quad\{0\} *\{1,2\} *\{3\}=\begin{array}{lll}
1 & \rightarrow & 3 \\
& \nearrow & \uparrow \\
0 & \rightarrow & 2
\end{array}
$$

Theorem 4.1 We have

$$
\begin{equation*}
\widetilde{H}_{r}\left(X_{1} X_{2} \ldots X_{l}\right) \cong \bigoplus_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{H}_{p_{1}}\left(X_{1}\right) \otimes \ldots \otimes \widetilde{H}_{p_{l}}\left(X_{l}\right) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\beta}_{r}\left(X_{1} X_{2} \ldots X_{l}\right)=\sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1}\right) \ldots \widetilde{\beta}_{p_{l}}\left(X_{l}\right) . \tag{4.4}
\end{equation*}
$$

By (2.5) and (4.3), $X_{1} X_{2} \ldots X_{l}$ and $X_{1} * X_{2} * \ldots * X_{l}$ are homologically equivalent.
Example. Let the base G be a square:
We have $G=\{1\}\{2,3\}\{4\}$ which implies that
$X_{G}=X_{1}\left(X_{2} \sqcup X_{3}\right) X_{4}$. Hence, by Theorem 4.1,

$$
\begin{align*}
\widetilde{\beta}_{r}\left(X_{G}\right) & =\sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+p_{3}=r-2\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1}\right) \widetilde{\beta}_{p_{2}}\left(X_{2} \sqcup X_{3}\right) \widetilde{\beta}_{p_{3}}\left(X_{4}\right) \\
& =\sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+p_{3}=r-2\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1}\right)\left(\widetilde{\beta}_{p_{2}}\left(X_{2}\right)+\widetilde{\beta}_{p_{2}}\left(X_{3}\right)+\mathbf{1}_{\left\{p_{2}=0\right\}}\right) \widetilde{\beta}_{p_{3}}\left(X_{4}\right) \\
& =\widetilde{\beta}_{r}\left(X_{1} X_{2} X_{4}\right)+\widetilde{\beta}_{r}\left(X_{1} X_{3} X_{4}\right)+\widetilde{\beta}_{r-1}\left(X_{1} X_{4}\right) . \tag{4.5}
\end{align*}
$$

For a general base G, if $i_{1} \ldots i_{k}$ is an arbitrary sequence of vertices in G then denote

$$
X_{i_{1} \ldots i_{k}}=X_{i_{1}} X_{i_{2}} \ldots X_{i_{k}} .
$$

Note that by (4.4)

$$
\widetilde{\beta}_{r}\left(X_{i_{1} \ldots i_{k}}\right)=\sum_{\substack{p_{1}+\ldots+p_{k}=r-(k-1) \\ p_{1}, \ldots, p_{k} \geq 0}} \widetilde{\beta}_{p_{1}}\left(X_{i_{1}}\right) \ldots \widetilde{\beta}_{p_{k}}\left(X_{i_{k}}\right),
$$

and we consider the numbers $\widetilde{\beta}_{r}\left(X_{i_{1} \ldots i_{k}}\right)$ as known.
Using this notation, we can rewrite (4.5) as follows: if G is a square then

$$
\begin{equation*}
\widetilde{\beta}_{r}\left(X_{G}\right)=\widetilde{\beta}_{r}\left(X_{124}\right)+\widetilde{\beta}_{r}\left(X_{134}\right)+\widetilde{\beta}_{r-1}\left(X_{14}\right) . \tag{4.6}
\end{equation*}
$$

As we will see below, for a general base $G, \widetilde{\beta}_{r}\left(X_{G}\right)$ can always be represented as a sum of Betti numbers $\widetilde{\beta}_{r-s}\left(X_{u}\right)$ where $s \geq 0$ and u runs over certain paths in G.

The main problem is to determine all such paths u and their shifts s.

Example. Consider the following digraph G

Clearly, we have $G=\{1,2\}\{3,4\}\{5,6\}$
which implies $\quad X_{G}=\left(X_{1} \sqcup X_{2}\right)\left(X_{3} \sqcup X_{4}\right)\left(X_{5} \sqcup X_{6}\right)$ By Theorem 4.1 we obtain

$$
\begin{aligned}
\widetilde{\beta}_{r}\left(X_{G}\right)= & \sum_{\left\{p_{i} \geq 0:\right.} \sum_{\left.p_{1}+p_{2}+p_{3}=r-2\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1} \sqcup X_{2}\right) \widetilde{\beta}_{p_{2}}\left(X_{3} \sqcup X_{4}\right) \widetilde{\beta}_{p_{3}}\left(X_{5} \sqcup X_{6}\right) \\
= & \sum_{\left\{p_{i} \geq 0:\right.} \sum_{\left.p_{1}+p_{2}+p_{3}=r-2\right\}}\left(\widetilde{\beta}_{p_{1}}\left(X_{1}\right)+\widetilde{\beta}_{p_{1}}\left(X_{2}\right)+\mathbf{1}_{\left\{p_{1}=0\right\}}\right)\left(\widetilde{\beta}_{p_{2}}\left(X_{3}\right)+\widetilde{\beta}_{p_{2}}\left(X_{4}\right)+\mathbf{1}_{\left\{p_{2}=0\right\}}\right)\left(\widetilde{\beta}_{p_{3}}\left(X_{5}\right)+\widetilde{\beta}_{p_{3}}\left(X_{6}\right)+\mathbf{1}_{\left\{p_{3}=0\right\}}\right) \\
= & \widetilde{\beta}_{r}\left(X_{135}\right)+\widetilde{\beta}_{r}\left(X_{145}\right)+\widetilde{\beta}_{r}\left(X_{136}\right)+\widetilde{\beta}_{r}\left(X_{146}\right)+\widetilde{\beta}_{r}\left(X_{235}\right)+\widetilde{\beta}_{r}\left(X_{236}\right)+\widetilde{\beta}_{r}\left(X_{245}\right)+\widetilde{\beta}_{r}\left(X_{246}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{13}\right)+\widetilde{\beta}_{r-1}\left(X_{14}\right)+\widetilde{\beta}_{r-1}\left(X_{23}\right)+\widetilde{\beta}_{r-1}\left(X_{24}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{35}\right)+\widetilde{\beta}_{r-1}\left(X_{36}\right)+\widetilde{\beta}_{r-1}\left(X_{45}\right)+\widetilde{\beta}_{r-1}\left(X_{46}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{15}\right)+\widetilde{\beta}_{r-1}\left(X_{16}\right)+\widetilde{\beta}_{r-1}\left(X_{25}\right)+\widetilde{\beta}_{r-1}\left(X_{26}\right) \\
& +\widetilde{\beta}_{r-2}\left(X_{1}\right)+\widetilde{\beta}_{r-2}\left(X_{2}\right)+\widetilde{\beta}_{r-2}\left(X_{3}\right)+\widetilde{\beta}_{r-2}\left(X_{4}\right)+\widetilde{\beta}_{r-2}\left(X_{5}\right)+\widetilde{\beta}_{r-2}\left(X_{6}\right)+\mathbf{1}_{\{r=2\}}
\end{aligned}
$$

Example. Let G be an octahedron:
We have $G=\{1,2\} *\{3,4\} *\{5,6\}$ whence

$$
X_{G}=\left(X_{1} \sqcup X_{2}\right) *\left(X_{3} \sqcup X_{4}\right) *\left(X_{5} \sqcup X_{6}\right)
$$

By (3.1) we obtain

$$
\begin{aligned}
\widetilde{\beta}_{r}\left(X_{G}\right)= & \sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+p_{3}=r-2\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1} \sqcup X_{2}\right) \widetilde{\beta}_{p_{2}}\left(X_{3} \sqcup X_{4}\right) \widetilde{\beta}_{p_{3}}\left(X_{5} \sqcup X_{6}\right) \\
= & \sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+p_{3}=r-2\right\}}\left(\widetilde{\beta}_{p_{1}}\left(X_{1}\right)+\widetilde{\beta}_{p_{1}}\left(X_{2}\right)+\mathbf{1}_{\left\{p_{1}=0\right\}}\right)\left(\widetilde{\beta}_{p_{2}}\left(X_{3}\right)+\widetilde{\beta}_{p_{2}}\left(X_{4}\right)+\mathbf{1}_{\left\{p_{2}=0\right\}}\right)\left(\widetilde{\beta}_{p_{3}}\left(X_{5}\right)+\widetilde{\beta}_{p_{3}}\left(X_{6}\right)+\mathbf{1}_{\left\{p_{3}=0\right\}}\right) \\
= & \widetilde{\beta}_{r}\left(X_{135}\right)+\widetilde{\beta}_{r}\left(X_{145}\right)+\widetilde{\beta}_{r}\left(X_{235}\right)+\widetilde{\beta}_{r}\left(X_{245}\right)+\widetilde{\beta}_{r}\left(X_{136}\right)+\widetilde{\beta}_{r}\left(X_{146}\right)+\widetilde{\beta}_{r}\left(X_{236}\right)+\widetilde{\beta}_{r}\left(X_{246}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{13}\right)+\widetilde{\beta}_{r-1}\left(X_{23}\right)+\widetilde{\beta}_{r-1}\left(X_{14}\right)+\widetilde{\beta}_{r-1}\left(X_{24}\right)+\widetilde{\beta}_{r-1}\left(X_{15}\right)+\widetilde{\beta}_{r-1}\left(X_{25}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{35}\right)+\widetilde{\beta}_{r-1}\left(X_{45}\right)+\widetilde{\beta}_{r-1}\left(X_{16}\right)+\widetilde{\beta}_{r-1}\left(X_{26}\right)+\widetilde{\beta}_{r-1}\left(X_{36}\right)+\widetilde{\beta}_{r-1}\left(X_{46}\right) \\
& +\widetilde{\beta}_{r-2}\left(X_{1}\right)+\widetilde{\beta}_{r-2}\left(X_{2}\right)+\widetilde{\beta}_{r-2}\left(X_{3}\right)+\widetilde{\beta}_{r-2}\left(X_{4}\right)+\widetilde{\beta}_{r-2}\left(X_{5}\right)+\widetilde{\beta}_{r-2}\left(X_{6}\right)+\mathbf{1}_{\{r=2\}} .
\end{aligned}
$$

5 Homology of linear and cyclic joins

Let now G be a linear digraph but not necessarily monotone. That is, the vertex set of G is $\{1, \ldots, l\}$ and, for any pair $(i, i+1)$ of consecutive numbers there is exactly one arrow: either $i \rightarrow i+1$ or $i \leftarrow i+1$.

Definition. We say that a vertex v of G is a turning point if v has either two incoming arrows or two outcoming arrows. Denote by \mathcal{T} the set of all turning points.

An allowed path in G is called maximal if it is not a proper subset (as a set of vertices) of another allowed path. Denote by $\mathcal{A}_{\max }$ the family of all maximal allowed paths in G.

Clearly, the end vertices of a maximal path are either turning points or the vertices $1, l$.

Theorem 5.1 If G is an arbitrary linear digraph then

$$
\widetilde{\beta}_{r}\left(X_{G}\right)=\sum_{u \in \mathcal{A}_{\max }} \widetilde{\beta}_{r}\left(X_{u}\right)+\sum_{v \in \mathcal{T}} \widetilde{\beta}_{r-1}\left(X_{v}\right) .
$$

In other words, $\widetilde{\beta}_{r}\left(X_{G}\right)$ is the sum of all $\widetilde{\beta}_{r}$ of the linear joins of X_{i} along all maximal allowed paths in G plus the sum of $\widetilde{\beta}_{r-1}$ of all X_{v} sitting at the turning points v.

Example. Consider a linear base

$$
\begin{equation*}
G=\{1 \rightarrow 2 \leftarrow 3 \leftarrow 4 \rightarrow 5\} \tag{5.1}
\end{equation*}
$$

Then $\mathcal{T}=\{2,4\}$, while maximal paths of L are

$$
\mathcal{A}_{\max }=\{1 \rightarrow 2, \quad 4 \rightarrow 3 \rightarrow 2, \quad 4 \rightarrow 5\}
$$

Hence, by Theorem 5.1,

$$
\widetilde{\beta}_{r}\left(X_{G}\right)=\widetilde{\beta}_{r}\left(X_{12}\right)+\widetilde{\beta}_{r}\left(X_{432}\right)+\widetilde{\beta}_{r}\left(X_{45}\right)+\widetilde{\beta}_{r-1}\left(X_{2}\right)+\widetilde{\beta}_{r-1}\left(X_{4}\right) .
$$

Example. Consider the following base G :

It is easy to see that G itself is the following linear join:

$$
G=(\{1\}\{2,4\}\{3\}\{5,7\}\{6\})_{\Gamma}
$$

where the digraph Γ is the same as in (5.1). The turning points of Γ are $\mathcal{T}=\{\mathrm{ii}$, iv $\}$, and maximal paths of Γ are

$$
\mathcal{A}_{\max }=\{\mathrm{i} \rightarrow \mathrm{ii}, \quad \text { iv } \rightarrow \mathrm{iii} \rightarrow \mathrm{ii}, \quad \text { iv } \rightarrow \mathrm{v}\} .
$$

For a Γ-join Y_{Γ} we have as above

$$
\widetilde{\beta}_{r}\left(Y_{\Gamma}\right)=\widetilde{\beta}_{r}\left(Y_{\mathrm{i}, \mathrm{ii}}\right)+\widetilde{\beta}_{r}\left(Y_{\mathrm{iv}, \mathrm{ii} i \mathrm{ii}}\right)+\widetilde{\beta}_{r}\left(Y_{\mathrm{iv}, \mathrm{v}}\right)+\widetilde{\beta}_{r-1}\left(Y_{\mathrm{ii}}\right)+\widetilde{\beta}_{r-1}\left(Y_{\mathrm{iv}}\right) .
$$

Setting $Y_{\mathrm{i}}=X_{1}, Y_{\mathrm{ii}}=X_{2} \sqcup X_{3}, Y_{\mathrm{iii}}=X_{3}, Y_{\mathrm{iv}}=X_{5} \sqcup X_{7}$ and $Y_{\mathrm{v}}=X_{6}$ we obtain

$$
\begin{aligned}
\widetilde{\beta}_{r}\left(X_{G}\right)= & \widetilde{\beta}_{r}\left(\left(X_{1}\left(X_{2} \sqcup X_{3}\right) X_{3}\left(X_{5} \sqcup X_{7}\right) X_{6}\right)_{\Gamma}\right) \\
= & \widetilde{\beta}_{r}\left(X_{1}\left(X_{2} \sqcup X_{4}\right)\right)+\widetilde{\beta}_{r}\left(\left(X_{5} \sqcup X_{7}\right) X_{3}\left(X_{2} \sqcup X_{4}\right)\right)+\widetilde{\beta}_{r}\left(\left(X_{5} \sqcup X_{7}\right) X_{6}\right) \\
& \quad+\widetilde{\beta}_{r-1}\left(X_{2} \sqcup X_{4}\right)+\widetilde{\beta}_{r-1}\left(X_{5} \sqcup X_{7}\right) \\
= & \widetilde{\beta}_{r}\left(X_{12}\right)+\widetilde{\beta}_{r}\left(X_{14}\right)+\widetilde{\beta}_{r-1}\left(X_{1}\right) \\
+ & \widetilde{\beta}_{r}\left(X_{532}\right)+\widetilde{\beta}_{r}\left(X_{534}\right)+\widetilde{\beta}_{r}\left(X_{732}\right)+\widetilde{\beta}_{r}\left(X_{734}\right) \\
& \quad+\widetilde{\beta}_{r-1}\left(X_{32}\right)+\widetilde{\beta}_{r-1}\left(X_{34}\right)+\widetilde{\beta}_{r-1}\left(X_{53}\right)+\widetilde{\beta}_{r-1}\left(X_{73}\right)+\widetilde{\beta}_{r-2}\left(X_{3}\right) \\
+ & \widetilde{\beta}_{r}\left(X_{56}\right)+\widetilde{\beta}_{r}\left(X_{76}\right)+\widetilde{\beta}_{r-1}\left(X_{6}\right) \\
+ & \widetilde{\beta}_{r-1}\left(X_{2}\right)+\widetilde{\beta}_{r-1}\left(X_{4}\right)+\mathbf{1}_{\{r=1\}}+\widetilde{\beta}_{r-1}\left(X_{5}\right)+\widetilde{\beta}_{r-1}\left(X_{7}\right)+1_{\{r=1\}} . \\
\widetilde{\beta}_{r}\left(X_{G}\right)= & \widetilde{\beta}_{r}\left(X_{534}\right)+\widetilde{\beta}_{r}\left(X_{532}\right)+\widetilde{\beta}_{r}\left(X_{734}\right)+\widetilde{\beta}_{r}\left(X_{732}\right) \\
& +\widetilde{\beta}_{r}\left(X_{12}\right)+\widetilde{\beta}_{r}\left(X_{14}\right)+\widetilde{\beta}_{r}\left(X_{56}\right)+\widetilde{\beta}_{r}\left(X_{76}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{73}\right)+\widetilde{\beta}_{r-1}\left(X_{53}\right)+\widetilde{\beta}_{r-1}\left(X_{32}\right)+\widetilde{\beta}_{r-1}\left(X_{34}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{1}\right)+\widetilde{\beta}_{r-1}\left(X_{2}\right)+\widetilde{\beta}_{r-1}\left(X_{4}\right)+\widetilde{\beta}_{r-1}\left(X_{5}\right)+\widetilde{\beta}_{r-1}\left(X_{6}\right)+\widetilde{\beta}_{r-1}\left(X_{7}\right) \\
& +\widetilde{\beta}_{r-2}\left(X_{3}\right)+\mathbf{2}_{\{r=1\}} .
\end{aligned}
$$

A digraph G is called cyclic if it is connected and each vertex has the undirected degree 2. Let G be a cyclic digraph with the set of vertices $V=\{1,2, \ldots, l\}$. We assume that the vertices are ordered so that every vertex $i \in V$ is connected by arrows to $i-1$ and $i+1$ (where l is identified with 0). In the same way as above we define the set $\mathcal{A}_{\max }$ and \mathcal{T}.

For example, consider the following hexagon:
Here $\mathcal{T}=\{1,4\}$ and
$\mathcal{A}_{\max }=\{4 \rightarrow 3 \rightarrow 2 \rightarrow 1,4 \rightarrow 5 \rightarrow 6 \rightarrow 1\}$

Theorem 5.2 Let G be a cyclic digraph that is neither triangle nor square nor double arrow. Then

$$
\begin{equation*}
\widetilde{\beta}_{r}\left(X_{G}\right)=\sum_{u \in \mathcal{A}_{\max }} \widetilde{\beta}_{r}\left(X_{u}\right)+\sum_{v \in \mathcal{T}} \widetilde{\beta}_{r-1}\left(X_{v}\right)+\widetilde{\beta}_{r}(G) . \tag{5.2}
\end{equation*}
$$

Note that in this case $\widetilde{\beta}_{r}(G)=\mathbf{1}_{\{r=1\}}$. If G is a triangle or square or double arrow then (5.2) is wrong, which is shown in Examples below.

Example. If G is the above hexagon then we obtain

$$
\widetilde{\beta}_{r}\left(X_{G}\right)=\widetilde{\beta}_{r}\left(X_{4321}\right)+\widetilde{\beta}_{r}\left(X_{4561}\right)+\widetilde{\beta}_{r-1}\left(X_{1}\right)+\widetilde{\beta}_{r-1}\left(X_{4}\right)+\mathbf{1}_{\{r=1\}} .
$$

Example. Consider the following 4-cyclic base:

$$
G=\begin{array}{lll}
2 & \rightarrow & 3 \\
\uparrow & & \downarrow \\
1 & \rightarrow & 4
\end{array}
$$

Since $\mathcal{T}=\{1,4\}$ and $\mathcal{A}_{\text {max }}=\{1 \rightarrow 2 \rightarrow 3 \rightarrow 4,1 \rightarrow 4\}$, we obtain

$$
\begin{equation*}
\widetilde{\beta}_{r}\left(X_{G}\right)=\widetilde{\beta}_{r}\left(X_{1234}\right)+\widetilde{\beta}_{r}\left(X_{14}\right)+\widetilde{\beta}_{r-1}\left(X_{1}\right)+\widetilde{\beta}_{r-1}\left(X_{4}\right)+\mathbf{1}_{\{r=1\}} \tag{5.3}
\end{equation*}
$$

Example. Consider the following 3-cyclic base: $\quad G=$
Then $\mathcal{A}_{\text {max }}$ and \mathcal{T} are empty, and we obtain $\widetilde{\beta}_{r}\left(X_{G}\right)=\mathbf{1}_{\{r=1\}}=\widetilde{\beta}_{r}(G)$.

Example. Consider the following tetrahedron as a base G :

We have $G=C *\{4\}$ where

$$
C=\{1 \rightarrow 2 \rightarrow 3 \rightarrow 1\}
$$

It follows that

$$
X_{G}=X_{C} * X_{4}
$$

and

$$
\widetilde{\beta}_{r}\left(X_{G}\right)=\sum_{p+q=r-1} \widetilde{\beta}_{p}\left(X_{C}\right) \widetilde{\beta}_{q}\left(X_{4}\right)=\sum_{p+q=r-1} 1_{\{p=1\}} \widetilde{\beta}_{q}\left(X_{4}\right)=\widetilde{\beta}_{r-2}\left(X_{4}\right)
$$

Hence, $\widetilde{\beta}_{r}\left(X_{G}\right)=\widetilde{\beta}_{r-2}\left(X_{4}\right)$.
Example. Let G be a triangle: $G=$ that

$$
\widetilde{\beta}_{r}\left(X_{G}\right)=\widetilde{\beta}_{r}\left(X_{123}\right) .
$$

However, the right hand side of (5.2) is in this case

$$
\widetilde{\beta}_{r}\left(X_{123}\right)+\widetilde{\beta}_{r-1}\left(X_{1}\right)+\widetilde{\beta}_{r-1}\left(X_{3}\right) \neq \widetilde{\beta}_{r}\left(X_{G}\right) .
$$

Example. Let G be a square:

$$
G=\begin{array}{lll}
3 & \rightarrow & 4 \\
\uparrow & & \uparrow \\
1 & \rightarrow & 2
\end{array}
$$

Then we that by (4.6)

$$
\widetilde{\beta}_{r}\left(X_{G}\right)=\widetilde{\beta}_{r}\left(X_{124}\right)+\widetilde{\beta}_{r}\left(X_{134}\right)+\widetilde{\beta}_{r-1}\left(X_{14}\right)
$$

while the right hand side of (5.2) is in this case

$$
\widetilde{\beta}_{r}\left(X_{124}\right)+\widetilde{\beta}_{r}\left(X_{134}\right)+\widetilde{\beta}_{r-1}\left(X_{1}\right)+\widetilde{\beta}_{r-1}\left(X_{4}\right) .
$$

Example. Let G be a double arrow: $G=\{1 \leftrightarrows 2\}$. Then

$$
X_{G}=X_{1} * X_{2} * X_{1}
$$

whence $\widetilde{\beta}_{r}\left(X_{G}\right)=\widetilde{\beta}_{r}\left(X_{121}\right)$. However, in this case $\mathcal{A}_{\max }$ and \mathcal{T} are empty, so that the right hand side of (5.2) is $\widetilde{\beta}_{r}(G)=0$.

Example. Let G be as here:
We have
$G=\{1,2,3,4\}\{5,6\}\{7 \rightarrow 8 \rightarrow 9 \rightarrow 7\}$
so that

$$
X_{G}=\left(X_{1} \sqcup X_{2} \sqcup X_{3} \sqcup X_{4}\right)\left(X_{5} \sqcup X_{6}\right) X_{\{7 \rightarrow 8 \rightarrow 9 \rightarrow 7\}}
$$

It follows that

$$
\begin{aligned}
\widetilde{\beta}_{r}\left(X_{G}\right)=\sum_{p+q+s=r-2}\left(\widetilde{\beta}_{p}\left(X_{1}\right)\right. & \left.+\widetilde{\beta}_{p}\left(X_{2}\right)+\widetilde{\beta}_{p}\left(X_{3}\right)+\widetilde{\beta}_{p}\left(X_{4}\right)+\mathbf{3}_{\{p=0\}}\right) \\
& \times\left(\widetilde{\beta}_{q}\left(X_{5}\right)+\widetilde{\beta}_{q}\left(X_{6}\right)+\mathbf{1}_{\{q=0\}}\right) \mathbf{1}_{\{s=1\}}
\end{aligned}
$$

which yields after computation

$$
\begin{aligned}
\widetilde{\beta}_{r}\left(X_{G}\right) & =\widetilde{\beta}_{r-2}\left(X_{15}\right)+\widetilde{\beta}_{r-2}\left(X_{16}\right)+\widetilde{\beta}_{r-2}\left(X_{25}\right)+\widetilde{\beta}_{r-2}\left(X_{26}\right) \\
& +\widetilde{\beta}_{r-2}\left(X_{35}\right)+\widetilde{\beta}_{r-2}\left(X_{36}\right)+\widetilde{\beta}_{r-2}\left(X_{45}\right)+\widetilde{\beta}_{r-2}\left(X_{46}\right) \\
& +\widetilde{\beta}_{r-3}\left(X_{1}\right)+\widetilde{\beta}_{r-3}\left(X_{2}\right)+\widetilde{\beta}_{r-3}\left(X_{3}\right)+\widetilde{\beta}_{r-3}\left(X_{4}\right)+3 \widetilde{\beta}_{r-3}\left(X_{5}\right)+3 \widetilde{\beta}_{r-3}\left(X_{6}\right)+\mathbf{3}_{\{r=3\}} .
\end{aligned}
$$

6 Homology of a generalized join

Theorem 6.1 There exists a finite sequence of paths $\left\{u_{k}\right\}$ in G and a sequence $\left\{s_{k}\right\}$ of non-negative integers such that, for any sequence $\left\{X_{i}\right\}$ of digraphs and any $r \geq 0$,

$$
\begin{equation*}
\widetilde{\beta}_{r}\left(X_{G}\right)=\sum_{k} \widetilde{\beta}_{r-s_{k}}\left(X_{u_{k}}\right)+\widetilde{\beta}_{r}(G) . \tag{6.1}
\end{equation*}
$$

Besides, the sequence $\left\{u_{k}\right\}$ contains all maximal allowed paths, and $u_{k} \in \mathcal{A}_{\max } \Leftrightarrow s_{k}=0$.

Example. Let the base G be a cube.
Using description of paths u_{k} from the proof of Theorem 6.1, we obtain

$$
\begin{aligned}
\widetilde{\beta}_{r}\left(X_{G}\right)= & \widetilde{\beta}_{r}\left(X_{1248}\right)+\widetilde{\beta}_{r}\left(X_{1268}\right)+\widetilde{\beta}_{r}\left(X_{1348}\right) \\
& +\widetilde{\beta}_{r}\left(X_{1378}\right)+\widetilde{\beta}_{r}\left(X_{1568}\right)+\widetilde{\beta}_{r}\left(X_{1578}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{178}\right)+\widetilde{\beta}_{r-1}\left(X_{168}\right)+\widetilde{\beta}_{r-1}\left(X_{148}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{128}\right)+\widetilde{\beta}_{r-1}\left(X_{138}\right)+\widetilde{\beta}_{r-1}\left(X_{158}\right) \\
& +\widetilde{\beta}_{r-2}\left(X_{18}\right)
\end{aligned}
$$

