Topological Methods for Deep Learning

Progress of Topology and its Applications
Beijing Institute of Mathematical Sciences and its Applications
April 21, 2022

Gunnar Carlsson
Stanford University

What is Deep Learning?

- Methodology based on neural networks
- Has produced outstanding classification results for complex data
- Images
- Text
- Molecules (Guowei Wei)

Problems

- Adversarial examples
- General lack of transparency
- Limits usefulness in many key domains, financial regulation, health care
- Would like to be able to learn more complex models

Neural Networks

Neural Networks

Neural Networks

- Given a data set and an output function, perhaps Boolean valued
- Weights are assigned to the directed edges of the network
- Activation at a node is computed using uniform function of activations of nodes connected to it
- Network is "trained" by optimization algorithms acting on the set of weights
- Final output is a formula (very large) determined by the final set of weights

Convolutional Neural Networks

- Structure of network adapted to specific cases
- Images (2D rectangular arrays)
- Text (1D arrays)
- Time series (1D arrays)

Convolutional Neural Networks

Does Learning by CNN's Behave Like Human Learning?

Joint work with Rickard Brüel Gabrielsson

What Do We Want to Know?

- Can we see similarities to what we have found in image patch data?
- What happens as the network learns?
- What are the "responsibilities" of the various layers?

Mumford Data Set (De Silva, Ishkhanov, Zomorodian, C.)

- Analysis of a data set of 3 x 3 patches in natural images
- Studied only "high variance" patches
- Studies only densest such patches (frequently occurring motifs) density proxies of varying locality
- Motivated by goal of understanding how tuning of neurons in visual cortex is affected by statistics of natural images

Image Patch Analysis: Primary Circle

Highest density high variance patches – non-local density measure

Image Patch Analysis: Three Circle Model

More local density measure

Image Patch Analysis: Klein Bottle

Still weaker threshold

Primary Visual Cortex

- Primary visual cortex (V1) lowest level processing beyond retina
- Higher levels (V2,V4, LGN, etc.) perform more abstract tasks
- Hubel-Wiesel show that individual neurons detect edges and lines
- Consistent with idea of compression of frequent signals

Visual Pathway

Topological Data Analysis

Data has shape and the shape matters

Regression

Regression

Topology

Königsberg Bridges

Confidential 26

How to Build Networks – Mapper Construction

- Apply a projection to the data set
- Use the projection to bin the data into overlapping bins
 - Cluster each bin using a fixed clustering method (requires data equipped with metric)
 - Create a node for each "partial cluster"
 - Create an edge between any two nodes whose corresponding clusters overlap

Confidential 28

Topological Modeling

- Model output is a network, not equations
- Not just visualization, many capabilities
- Selection
- Segmentation
- Coloring, hot spot analysis
- Explain, justify
- Topological feature creation, selection
- Model assessment and improvement

Confidential 29

Topological Analysis of Weight Spaces (MNIST)

Non-local density thresholding for layer 1 of depth 2 net

Topological Analysis of Weight Spaces (Cifar10)

Mapper representations over the number of iterations, tightly density thresholded, gray scale reduced

Topological Analysis of Weight Spaces (Cifar10)

¹st layer, looser density thresholding, more localized density estimator, color retained

Topological Analysis of Weight Spaces (VGG16)

Mapper findings from each of 13 layers, same density thresholding, relatively local estimator

Hard Code Primary Circle and Klein Bottle

- Allows both speed up and generalization
- Speed up of 2X for MNIST and 3.5X with SVHN
- Generalization from MNIST to SVHN doubles accuracy of standard method (10% to 22%)

TDA and Deep Architectures

Convolutional Situation

- Convolutional nets use the grid structure on the set of pixels in a critical way
- Pixels are the features for image data sets
- We use this a priori geometry and use it in designing the neural net
- Important in restricting the class of formulas that are considered
- Restrict to formulas that are "local" in the geometry of feature space
- Thought experiment: Time series learn derivatives
- Images learn directional derivatives
- What if there is no a priori geometry?

Discovered Geometry

- We have discovered feature sets that carry geometry
- Primary circle, Klein bottle, etc.
- Can use geometry to design architectures

Feature Space Modeling

- Given a data matrix, one can also consider the transpose matrix
- The rows of the transpose are the features of the data set
- When there are many features, very useful to create Mapper models
- Compresses and recognizes correlations among features
- Each row of original matrix gives a function on feature set, and on nodes of the topological model

Microarray Analysis of Breast Cancer

Explaining the Different Cohorts

UCSD Microbiome

Generalized Convolutional Nets

- Feed-forward structure: {X₀,...,X_n,C₁,..., C_n}
- X_i 's are sets, $C_i:X_{i-1} \longrightarrow X_i$ is a correspondence
- This data can be used to create a network
- Nodes are elements in all X_i's, each X_i is a layer
- Correspondence determines connections from X_{i-1 to} X_i
- $v \longrightarrow w$ if and only if (v,w) is in C_i
- Connections only between nearby points.

Klein Bottle Connections

Two consecutive Klein layers in a feed forward network

Experiments with Topological Neural Nets

Joint work with Ben Filippenko, Ephy Love, and Vasileos Maroulas

Generalization

Generalization

Generalization

Learning

Learning on Video

Gary Marcus

- Deep Learning is data hungry
- It has trouble working with prior knowledge
- It has trouble with generalization and adversarial examples
- It cannot be "engineered"

Thank You