
BERT (Bid i rect iona l  Encoder  

Representat ion  f rom Transformers)

BERT (Bid i rect iona l  Encoder  

Representat ion  f rom Transformers)

谢 海 华 助 理 研 究 员

北 京 雁 栖 湖 应 用 数 学 研 究 院

大 数 据 及 人 工 智 能

2 0 2 2 . 0 4



The BERT

BERT (Bidirectional Encoder 
Representations from Transformers) 

Google 2018

Transformer (“Attention is all you need”)
Google 2017

Attention (“Neural Machine Translation 
by Jointly Learning to Align and 

Translate”), 2015



Brie f  In t roduct ion  to  BERT

Our conceptual understanding of how best to represent words and sentences in a way that 

best captures underlying meanings and relationships is rapidly evolving. Moreover, the NLP 

community has been putting forward incredibly powerful components that you can freely 

download and use in your own models and pipelines.



Brie f  In t roduct ion  to  BERT

BERT is a model that broke several records for how well models can handle language-based 
tasks. Soon after the release of the paper describing the model, the team also open-sourced 
the code of the model, and made available for download versions of the model that were 
already pre-trained on massive datasets. This is a momentous development since it enables 
anyone building a machine learning model involving language processing to use this 
powerhouse as a readily-available component – saving the time, energy, knowledge, and 
resources that would have gone to training a language-processing model from scratch.

BERT builds on top of a number of clever ideas that have been bubbling up in the NLP 
community recently – including but not limited to Semi-supervised Sequence
Learning, ELMo, ULMFiT, the OpenAI transformer, and the Transformer.



Brie f  In t roduct ion  to  BERT



Example:  Sentence  Class i f ica t ion

The most straight-forward way to use BERT is to use it to classify a single piece of text. This 
model would look like this:

To train such a model, you mainly have to train the classifier, with minimal changes happening to the 

BERT model during the training phase. This training process is called Fine-Tuning, and has roots 

in Semi-supervised Sequence Learning and ULMFiT.



Example:  Sentence  Class i f ica t ion

For this spam classifier example, the labeled dataset would be a list of email 

messages and a label (“spam” or “not spam” for each message).



Example:  Sentence  Class i f ica t ion

Other examples for such a use-case include:
 Sentiment analysis

 Input: Movie/Product review. Output: is the review positive or negative?
 Example dataset: SST

 Fact-checking
 Input: sentence. Output: “Claim” or “Not Claim”
 More ambitious/futuristic example:

• Input: Claim sentence. Output: “True” or “False”
 Full Fact is an organization building automatic fact-checking tools for the benefit of 

the public. Part of their pipeline is a classifier that reads news articles and detects 
claims (classifies text as either “claim” or “not claim”) which can later be fact-
checked (by humans now, with ML later, hopefully).

 Video: Sentence embeddings for automated factchecking - Lev Konstantinovskiy.



Model  Archi tecture

Two model sizes for BERT:
 BERT BASE – Comparable in size to the OpenAI Transformer in order to compare performance

 BERT LARGE – A ridiculously huge model which achieved the state of the art results



Model  Archi tecture

BERT is basically a trained Transformer Encoder stack. Both BERT model sizes have a large number of 
encoder layers (which the paper calls Transformer Blocks) – twelve for the Base version, and twenty four for 
the Large version. These also have larger feedforward-networks (768 and 1024 hidden units respectively), and 
more attention heads (12 and 16 respectively) than the default configuration in the reference implementation of 
the Transformer in the initial paper (6 encoder layers, 512 hidden units, and 8 attention heads).



Model  Inputs

The first input token is supplied with a special [CLS] token for reasons that will become apparent 

later on. CLS here stands for Classification.



Model  Inputs
Just like the vanilla encoder of the transformer, BERT takes a sequence of words as input which keep 

flowing up the stack. Each layer applies self-attention, and passes its results through a feed-forward network, 

and then hands it off to the next encoder.

In terms of architecture, this has been identical to the Transformer up until this point (aside from size, which 

are just configurations we can set). It is at the output that we first start seeing how things diverge.



Model  Outputs

Each position outputs a vector of size hidden_size (768 in BERT Base). For the sentence classification 

example we’ve looked at above, we focus on the output of only the first position (that we passed the 

special [CLS] token to).



Model  Outputs

That vector can now be used as the 
input for a classifier of our choosing. 
The paper achieves great results by 
just using a single-layer neural 
network as the classifier.

If you have more labels (for example 
if you’re an email service that tags 
emails with “spam”, “not spam”, 
“social”, and “promotion”), you just 
tweak the classifier network to have 
more output neurons that then pass 
through softmax.



Para l le ls  wi th  Convolut iona l  Nets

For those with a background in computer vision, this vector hand-off should be reminiscent of what 
happens between the convolution part of a network like VGGNet and the fully-connected 
classification portion at the end of the network.



A New Age of  Embedding

Word Embedding Recap

For words to be processed by machine learning models, they need some form of numeric representation 
that models can use in their calculation. Word2Vec showed that we can use a vector (a list of numbers) to 
properly represent words in a way that captures semantic or meaning-related relationships (e.g. the ability 
to tell if words are similar, or opposites, or that a pair of words like “Stockholm” and “Sweden” have the 
same relationship between them as “Cairo” and “Egypt” have between them) as well as syntactic, or 
grammar-based, relationships (e.g. the relationship between “had” and “has” is the same as that between 
“was” and “is”).

The field quickly realized it’s a great idea to use embeddings that were pre-trained on vast amounts of text 
data instead of training them alongside the model on what was frequently a small dataset. So it became 
possible to download a list of words and their embeddings generated by pre-training with Word2Vec or 
GloVe.

The GloVe word embedding of the word "stick" - a vector of 200 floats (rounded to two decimals). It goes on 
for two hundred values.



ELMo:  Context  Mat ters

If we’re using this GloVe representation, 
then the word “stick” would be represented 
by this vector no-matter what the context 
was. “Wait a minute” said a number of NLP 
researchers, “stick”” has multiple meanings 
depending on where it’s used. Why not give 
it an embedding based on the context it’s 
used in – to both capture the word meaning 
in that context as well as other contextual 
information?”. And so, contextualized word-
embeddings were born.

Contextualized word-embeddings can give 
words different embeddings based on the 
meaning they carry in the context of the 
sentence.



ELMo:  Context  Mat ters

Instead of using a fixed 
embedding for each word, 
ELMo looks at the entire 
sentence before assigning 
each word in it an embedding. 
It uses a bi-directional LSTM 
trained on a specific task to be 
able to create those 
embeddings.

ELMo provided a significant 
step towards pre-training in the 
context of NLP. The ELMo
LSTM would be trained on a 
massive dataset in the 
language of our dataset, and 
then we can use it as a 
component in other models that 
need to handle language.



ELMo:  Context  Mat ters

What’s ELMo’s secret?

ELMo gained its language 

understanding from being 

trained to predict the next 

word in a sequence of words 

- a task called Language 

Modeling. This is convenient 

because we have vast 

amounts of text data that 

such a model can learn from 

without needing labels.

A step in the pre-training 
process of ELMo: Given “Let’s 
stick to” as input, predict the 
next most likely word –
a language modeling task. 
When trained on a large 
dataset, the model starts to 
pick up on language patterns. 
It’s unlikely it’ll accurately 
guess the next word in this 
example. More realistically, 
after a word such as “hang”, it 
will assign a higher probability 
to a word like “out” (to spell 
“hang out”) than to “camera”.



ELMo:  Context  Mat ters

We can see the hidden state of each unrolled-LSTM step peaking out from behind ELMo’s head. Those 

come in handy in the embedding process after this pre-training is done.

ELMo actually goes a step further and trains a bi-directional LSTM – so that its language model doesn’t only 

have a sense of the next word, but also the previous word.



ELMo:  Context  Mat ters

ELMo comes up with the contextualized embedding through grouping together the hidden states (and initial 

embedding) in a certain way (concatenation followed by weighted summation).



ULM-FiT: Nailing down Transfer Learning in NLP

ULM-FiT introduced methods to effectively utilize a lot of what the model learns during pre-

training – more than just embeddings, and more than contextualized embeddings. ULM-FiT

introduced a language model and a process to effectively fine-tune that language model for 

various tasks.

NLP finally had a way to do transfer learning probably as well as Computer Vision could.



The  Trans former :  Go ing  beyond  LSTMs

The release of the Transformer paper and code, and the results it achieved on tasks such as 

machine translation started to make some in the field think of them as a replacement to 

LSTMs. This was compounded by the fact that Transformers deal with long-term 

dependencies better than LSTMs.

The Encoder-Decoder structure of the transformer made it perfect for machine translation. 

But how would you use it for sentence classification? How would you use it to pre-train a 

language model that can be fine-tuned for other tasks (downstream tasks is what the field 

calls those supervised-learning tasks that utilize a pre-trained model or component).



OpenAI Transformer: Pre-training a Transformer Decoder for Language Modeling

It turns out we don’t need an entire Transformer to adopt transfer learning and a fine-tunable language model 

for NLP tasks. We can do with just the decoder of the transformer. The decoder is a good choice because it’s 

a natural choice for language modeling (predicting the next word) since it’s built to mask future tokens – a 

valuable feature when it’s generating a translation word by word.

The OpenAI Transformer is made up of the decoder stack from the Transformer



OpenAI Transformer: Pre-training a Transformer Decoder for Language Modeling

The model stacked twelve decoder layers. Since 
there is no encoder in this set up, these decoder 
layers would not have the encoder-decoder 
attention sublayer that vanilla transformer decoder 
layers have. It would still have the self-attention 
layer, however (masked so it doesn’t peak at future 
tokens).
With this structure, we can proceed to train the 
model on the same language modeling task: 
predict the next word using massive (unlabeled) 
datasets. Just, throw the text of 7,000 books at it 
and have it learn! Books are great for this sort of 
task since it allows the model to learn to associate 
related information even if they’re separated by a 
lot of text – something you don’t get for example, 
when you’re training with tweets, or articles..

The OpenAI Transformer is now ready to be 
trained to predict the next word on a dataset made 
up of 7,000 books.



Tr a n s f e r  L e a r n i n g  t o  D o w n s t r e a m  Ta s k s

Now that the OpenAI transformer is pre-

trained and its layers have been tuned to 

reasonably handle language, we can start 

using it for downstream tasks. Let’s first 

look at sentence classification (classify an 

email message as “spam” or “not spam”):

How to use a pre-trained OpenAI

transformer to do sentence classification



Transfer  Learn ing to  Downstream Tasks

The OpenAI paper outlines a number of input transformations to handle the inputs for different types of tasks. 
The following image from the paper shows the structures of the models and input transformations to carry 
out different tasks.



BERT:  From Decoders  to  Encoders

The openAI transformer gave us a fine-tunable pre-trained model based on the Transformer. 

But something went missing in this transition from LSTMs to Transformers. ELMo’s language 

model was bi-directional, but the openAI transformer only trains a forward language model. 

Could we build a transformer-based model whose language model looks both forward and 

backwards (in the technical jargon – “is conditioned on both left and right context”)?



Masked Language Model

“We’ll use transformer encoders”, 
said BERT.
“This is madness”, replied Ernie, 
“Everybody knows bidirectional 
conditioning would allow each word 
to indirectly see itself in a multi-
layered context.”
“We’ll use masks”, said BERT 
confidently.

BERT's clever language modeling 
task masks 15% of words in the input 
and asks the model to predict the 
missing word.



Masked Language Model

Finding the right task to train a Transformer stack of encoders is a complex hurdle that BERT 

resolves by adopting a “masked language model” concept from earlier literature (where it’s 

called a Cloze task).

Beyond masking 15% of the input, BERT also mixes things a bit in order to improve how the 

model later fine-tunes. Sometimes it randomly replaces a word with another word and asks 

the model to predict the correct word in that position.



Two-sentence Tasks

If you look back up at the input transformations 
the OpenAI transformer does to handle 
different tasks, you’ll notice that some tasks 
require the model to say something intelligent 
about two sentences (e.g. are they simply 
paraphrased versions of each other? Given a 
wikipedia entry as input, and a question 
regarding that entry as another input, can we 
answer that question?).
To make BERT better at handling relationships 
between multiple sentences, the pre-training 
process includes an additional task: Given two 
sentences (A and B), is B likely to be the 
sentence that follows A, or not?

The second task BERT is pre-trained on is a 
two-sentence classification task. The 
tokenization is oversimplified in this graphic as 
BERT actually uses WordPieces as tokens 
rather than words --- so some words are 
broken down into smaller chunks.



Task speci f ic -Models

The BERT paper shows a number of ways to use BERT for different tasks.



BERT for  fea ture  ext ract ion

The fine-tuning approach 
isn’t the only way to use 
BERT. Just like ELMo, 
you can use the pre-
trained BERT to create 
contextualized word 
embeddings. Then you 
can feed these 
embeddings to your 
existing model – a 
process the paper shows 
yield results not far 
behind fine-tuning BERT 
on a task such as 
named-entity recognition.



Model  Archi tecture

Which vector works 
best as a 
contextualized 
embedding? I would 
think it depends on 
the task. The paper 
examines six choices 
(Compared to the fine-
tuned model which 
achieved a score of 
96.4):



Take BERT out  for  a  sp in

Look at the code in the BERT repo:
• The model is constructed in modeling.py (class BertModel) and is pretty much identical to a 

vanilla Transformer encoder.
• run_classifier.py is an example of the fine-tuning process. It also constructs the 

classification layer for the supervised model. If you want to construct your own classifier, 
check out the create_model() method in that file.

• Several pre-trained models are available for download. These span BERT Base and BERT 
Large, as well as languages such as English, Chinese, and a multi-lingual model covering 
102 languages trained on wikipedia.

• BERT doesn’t look at words as tokens. Rather, it looks at WordPieces. tokenization.py is 
the tokenizer that would turns your words into wordPieces appropriate for BERT.

You can also check out the PyTorch implementation of BERT. The AllenNLP library uses this 
implementation to allow using BERT embeddings with any model.



Q&A

问题及讨论问题及讨论


