
BERT (Bid i rect iona l Encoder

Representat ion f rom Transformers)

BERT (Bid i rect iona l Encoder

Representat ion f rom Transformers)

谢 海 华 助 理 研 究 员

北 京 雁 栖 湖 应 用 数 学 研 究 院

大 数 据 及 人 工 智 能

2 0 2 2 . 0 4

The BERT

BERT (Bidirectional Encoder
Representations from Transformers)

Google 2018

Transformer (“Attention is all you need”)
Google 2017

Attention (“Neural Machine Translation
by Jointly Learning to Align and

Translate”), 2015

Brie f In t roduct ion to BERT

Our conceptual understanding of how best to represent words and sentences in a way that

best captures underlying meanings and relationships is rapidly evolving. Moreover, the NLP

community has been putting forward incredibly powerful components that you can freely

download and use in your own models and pipelines.

Brie f In t roduct ion to BERT

BERT is a model that broke several records for how well models can handle language-based
tasks. Soon after the release of the paper describing the model, the team also open-sourced
the code of the model, and made available for download versions of the model that were
already pre-trained on massive datasets. This is a momentous development since it enables
anyone building a machine learning model involving language processing to use this
powerhouse as a readily-available component – saving the time, energy, knowledge, and
resources that would have gone to training a language-processing model from scratch.

BERT builds on top of a number of clever ideas that have been bubbling up in the NLP
community recently – including but not limited to Semi-supervised Sequence
Learning, ELMo, ULMFiT, the OpenAI transformer, and the Transformer.

Brie f In t roduct ion to BERT

Example: Sentence Class i f ica t ion

The most straight-forward way to use BERT is to use it to classify a single piece of text. This
model would look like this:

To train such a model, you mainly have to train the classifier, with minimal changes happening to the

BERT model during the training phase. This training process is called Fine-Tuning, and has roots

in Semi-supervised Sequence Learning and ULMFiT.

Example: Sentence Class i f ica t ion

For this spam classifier example, the labeled dataset would be a list of email

messages and a label (“spam” or “not spam” for each message).

Example: Sentence Class i f ica t ion

Other examples for such a use-case include:
 Sentiment analysis

 Input: Movie/Product review. Output: is the review positive or negative?
 Example dataset: SST

 Fact-checking
 Input: sentence. Output: “Claim” or “Not Claim”
 More ambitious/futuristic example:

• Input: Claim sentence. Output: “True” or “False”
 Full Fact is an organization building automatic fact-checking tools for the benefit of

the public. Part of their pipeline is a classifier that reads news articles and detects
claims (classifies text as either “claim” or “not claim”) which can later be fact-
checked (by humans now, with ML later, hopefully).

 Video: Sentence embeddings for automated factchecking - Lev Konstantinovskiy.

Model Archi tecture

Two model sizes for BERT:
 BERT BASE – Comparable in size to the OpenAI Transformer in order to compare performance

 BERT LARGE – A ridiculously huge model which achieved the state of the art results

Model Archi tecture

BERT is basically a trained Transformer Encoder stack. Both BERT model sizes have a large number of
encoder layers (which the paper calls Transformer Blocks) – twelve for the Base version, and twenty four for
the Large version. These also have larger feedforward-networks (768 and 1024 hidden units respectively), and
more attention heads (12 and 16 respectively) than the default configuration in the reference implementation of
the Transformer in the initial paper (6 encoder layers, 512 hidden units, and 8 attention heads).

Model Inputs

The first input token is supplied with a special [CLS] token for reasons that will become apparent

later on. CLS here stands for Classification.

Model Inputs
Just like the vanilla encoder of the transformer, BERT takes a sequence of words as input which keep

flowing up the stack. Each layer applies self-attention, and passes its results through a feed-forward network,

and then hands it off to the next encoder.

In terms of architecture, this has been identical to the Transformer up until this point (aside from size, which

are just configurations we can set). It is at the output that we first start seeing how things diverge.

Model Outputs

Each position outputs a vector of size hidden_size (768 in BERT Base). For the sentence classification

example we’ve looked at above, we focus on the output of only the first position (that we passed the

special [CLS] token to).

Model Outputs

That vector can now be used as the
input for a classifier of our choosing.
The paper achieves great results by
just using a single-layer neural
network as the classifier.

If you have more labels (for example
if you’re an email service that tags
emails with “spam”, “not spam”,
“social”, and “promotion”), you just
tweak the classifier network to have
more output neurons that then pass
through softmax.

Para l le ls wi th Convolut iona l Nets

For those with a background in computer vision, this vector hand-off should be reminiscent of what
happens between the convolution part of a network like VGGNet and the fully-connected
classification portion at the end of the network.

A New Age of Embedding

Word Embedding Recap

For words to be processed by machine learning models, they need some form of numeric representation
that models can use in their calculation. Word2Vec showed that we can use a vector (a list of numbers) to
properly represent words in a way that captures semantic or meaning-related relationships (e.g. the ability
to tell if words are similar, or opposites, or that a pair of words like “Stockholm” and “Sweden” have the
same relationship between them as “Cairo” and “Egypt” have between them) as well as syntactic, or
grammar-based, relationships (e.g. the relationship between “had” and “has” is the same as that between
“was” and “is”).

The field quickly realized it’s a great idea to use embeddings that were pre-trained on vast amounts of text
data instead of training them alongside the model on what was frequently a small dataset. So it became
possible to download a list of words and their embeddings generated by pre-training with Word2Vec or
GloVe.

The GloVe word embedding of the word "stick" - a vector of 200 floats (rounded to two decimals). It goes on
for two hundred values.

ELMo: Context Mat ters

If we’re using this GloVe representation,
then the word “stick” would be represented
by this vector no-matter what the context
was. “Wait a minute” said a number of NLP
researchers, “stick”” has multiple meanings
depending on where it’s used. Why not give
it an embedding based on the context it’s
used in – to both capture the word meaning
in that context as well as other contextual
information?”. And so, contextualized word-
embeddings were born.

Contextualized word-embeddings can give
words different embeddings based on the
meaning they carry in the context of the
sentence.

ELMo: Context Mat ters

Instead of using a fixed
embedding for each word,
ELMo looks at the entire
sentence before assigning
each word in it an embedding.
It uses a bi-directional LSTM
trained on a specific task to be
able to create those
embeddings.

ELMo provided a significant
step towards pre-training in the
context of NLP. The ELMo
LSTM would be trained on a
massive dataset in the
language of our dataset, and
then we can use it as a
component in other models that
need to handle language.

ELMo: Context Mat ters

What’s ELMo’s secret?

ELMo gained its language

understanding from being

trained to predict the next

word in a sequence of words

- a task called Language

Modeling. This is convenient

because we have vast

amounts of text data that

such a model can learn from

without needing labels.

A step in the pre-training
process of ELMo: Given “Let’s
stick to” as input, predict the
next most likely word –
a language modeling task.
When trained on a large
dataset, the model starts to
pick up on language patterns.
It’s unlikely it’ll accurately
guess the next word in this
example. More realistically,
after a word such as “hang”, it
will assign a higher probability
to a word like “out” (to spell
“hang out”) than to “camera”.

ELMo: Context Mat ters

We can see the hidden state of each unrolled-LSTM step peaking out from behind ELMo’s head. Those

come in handy in the embedding process after this pre-training is done.

ELMo actually goes a step further and trains a bi-directional LSTM – so that its language model doesn’t only

have a sense of the next word, but also the previous word.

ELMo: Context Mat ters

ELMo comes up with the contextualized embedding through grouping together the hidden states (and initial

embedding) in a certain way (concatenation followed by weighted summation).

ULM-FiT: Nailing down Transfer Learning in NLP

ULM-FiT introduced methods to effectively utilize a lot of what the model learns during pre-

training – more than just embeddings, and more than contextualized embeddings. ULM-FiT

introduced a language model and a process to effectively fine-tune that language model for

various tasks.

NLP finally had a way to do transfer learning probably as well as Computer Vision could.

The Trans former : Go ing beyond LSTMs

The release of the Transformer paper and code, and the results it achieved on tasks such as

machine translation started to make some in the field think of them as a replacement to

LSTMs. This was compounded by the fact that Transformers deal with long-term

dependencies better than LSTMs.

The Encoder-Decoder structure of the transformer made it perfect for machine translation.

But how would you use it for sentence classification? How would you use it to pre-train a

language model that can be fine-tuned for other tasks (downstream tasks is what the field

calls those supervised-learning tasks that utilize a pre-trained model or component).

OpenAI Transformer: Pre-training a Transformer Decoder for Language Modeling

It turns out we don’t need an entire Transformer to adopt transfer learning and a fine-tunable language model

for NLP tasks. We can do with just the decoder of the transformer. The decoder is a good choice because it’s

a natural choice for language modeling (predicting the next word) since it’s built to mask future tokens – a

valuable feature when it’s generating a translation word by word.

The OpenAI Transformer is made up of the decoder stack from the Transformer

OpenAI Transformer: Pre-training a Transformer Decoder for Language Modeling

The model stacked twelve decoder layers. Since
there is no encoder in this set up, these decoder
layers would not have the encoder-decoder
attention sublayer that vanilla transformer decoder
layers have. It would still have the self-attention
layer, however (masked so it doesn’t peak at future
tokens).
With this structure, we can proceed to train the
model on the same language modeling task:
predict the next word using massive (unlabeled)
datasets. Just, throw the text of 7,000 books at it
and have it learn! Books are great for this sort of
task since it allows the model to learn to associate
related information even if they’re separated by a
lot of text – something you don’t get for example,
when you’re training with tweets, or articles..

The OpenAI Transformer is now ready to be
trained to predict the next word on a dataset made
up of 7,000 books.

Tr a n s f e r L e a r n i n g t o D o w n s t r e a m Ta s k s

Now that the OpenAI transformer is pre-

trained and its layers have been tuned to

reasonably handle language, we can start

using it for downstream tasks. Let’s first

look at sentence classification (classify an

email message as “spam” or “not spam”):

How to use a pre-trained OpenAI

transformer to do sentence classification

Transfer Learn ing to Downstream Tasks

The OpenAI paper outlines a number of input transformations to handle the inputs for different types of tasks.
The following image from the paper shows the structures of the models and input transformations to carry
out different tasks.

BERT: From Decoders to Encoders

The openAI transformer gave us a fine-tunable pre-trained model based on the Transformer.

But something went missing in this transition from LSTMs to Transformers. ELMo’s language

model was bi-directional, but the openAI transformer only trains a forward language model.

Could we build a transformer-based model whose language model looks both forward and

backwards (in the technical jargon – “is conditioned on both left and right context”)?

Masked Language Model

“We’ll use transformer encoders”,
said BERT.
“This is madness”, replied Ernie,
“Everybody knows bidirectional
conditioning would allow each word
to indirectly see itself in a multi-
layered context.”
“We’ll use masks”, said BERT
confidently.

BERT's clever language modeling
task masks 15% of words in the input
and asks the model to predict the
missing word.

Masked Language Model

Finding the right task to train a Transformer stack of encoders is a complex hurdle that BERT

resolves by adopting a “masked language model” concept from earlier literature (where it’s

called a Cloze task).

Beyond masking 15% of the input, BERT also mixes things a bit in order to improve how the

model later fine-tunes. Sometimes it randomly replaces a word with another word and asks

the model to predict the correct word in that position.

Two-sentence Tasks

If you look back up at the input transformations
the OpenAI transformer does to handle
different tasks, you’ll notice that some tasks
require the model to say something intelligent
about two sentences (e.g. are they simply
paraphrased versions of each other? Given a
wikipedia entry as input, and a question
regarding that entry as another input, can we
answer that question?).
To make BERT better at handling relationships
between multiple sentences, the pre-training
process includes an additional task: Given two
sentences (A and B), is B likely to be the
sentence that follows A, or not?

The second task BERT is pre-trained on is a
two-sentence classification task. The
tokenization is oversimplified in this graphic as
BERT actually uses WordPieces as tokens
rather than words --- so some words are
broken down into smaller chunks.

Task speci f ic -Models

The BERT paper shows a number of ways to use BERT for different tasks.

BERT for fea ture ext ract ion

The fine-tuning approach
isn’t the only way to use
BERT. Just like ELMo,
you can use the pre-
trained BERT to create
contextualized word
embeddings. Then you
can feed these
embeddings to your
existing model – a
process the paper shows
yield results not far
behind fine-tuning BERT
on a task such as
named-entity recognition.

Model Archi tecture

Which vector works
best as a
contextualized
embedding? I would
think it depends on
the task. The paper
examines six choices
(Compared to the fine-
tuned model which
achieved a score of
96.4):

Take BERT out for a sp in

Look at the code in the BERT repo:
• The model is constructed in modeling.py (class BertModel) and is pretty much identical to a

vanilla Transformer encoder.
• run_classifier.py is an example of the fine-tuning process. It also constructs the

classification layer for the supervised model. If you want to construct your own classifier,
check out the create_model() method in that file.

• Several pre-trained models are available for download. These span BERT Base and BERT
Large, as well as languages such as English, Chinese, and a multi-lingual model covering
102 languages trained on wikipedia.

• BERT doesn’t look at words as tokens. Rather, it looks at WordPieces. tokenization.py is
the tokenizer that would turns your words into wordPieces appropriate for BERT.

You can also check out the PyTorch implementation of BERT. The AllenNLP library uses this
implementation to allow using BERT embeddings with any model.

Q&A

问题及讨论问题及讨论

