
Neura l Machine Transla t ion Model

(Seq2seq Models Wi th At tent ion)

Neura l Machine Transla t ion Model

(Seq2seq Models Wi th At tent ion)

谢 海 华 助 理 研 究 员

北 京 雁 栖 湖 应 用 数 学 研 究 院

大 数 据 及 人 工 智 能

2 0 2 2 . 0 4

The Attention Mechanism

BERT (Bidirectional Encoder
Representations from Transformers)

Google 2018

Transformer (“Attention is all you need”)
Google 2017

Attention (“Neural Machine Translation
by Jointly Learning to Align and

Translate”), 2015

Sequence-to-sequence models

A sequence-to-sequence (seq2seq) model is a model that takes a sequence of items
(words, letters, features of an images … etc.) and outputs another sequence of items. A
trained model would work like this:

Sequence-to-sequence models

In neural machine translation, a sequence is a series of words, processed one after

another. The output is, likewise, a series of words:

Looking under the hood
Under the hood, the model is composed of an encoder and a decoder.

The encoder processes each item in the input sequence, it compiles the information it
captures into a vector (called the context). After processing the entire input sequence,
the encoder sends the context over to the decoder, which begins producing the output
sequence item by item.

Looking under the hood

The same applies in the case of machine translation.

Looking under the hood

The context is a vector (an array of numbers, basically) in the case of machine translation.
The encoder and decoder tend to both be recurrent neural networks (Be sure to check out
Luis Serrano’s A friendly introduction to Recurrent Neural Networks for an intro to RNNs).

The context is a vector of floats. Later in this post we will visualize vectors in color by assigning
brighter colors to the cells with higher values.

You can set the size of the context vector when you set up your model. It is basically the number of
hidden units in the encoder RNN. These visualizations show a vector of size 4, but in real world
applications the context vector would be of a size like 256, 512, or 1024.

Recurrent Neural Network

By design, a RNN takes two inputs at each time step: an input (in the case of the encoder, one
word from the input sentence), and a hidden state. The word, however, needs to be
represented by a vector. To transform a word into a vector, we turn to the class of methods
called “word embedding” algorithms. These turn words into vector spaces that capture a lot of
the meaning/semantic information of the words (e.g. king - man + woman = queen).

We need to turn the input words into vectors before processing them. That transformation is done
using a word embedding algorithm. We can use pre-trained embeddings or train our own
embedding on our dataset. Embedding vectors of size 200 or 300 are typical, we're showing a
vector of size four for simplicity.

Recurrent Neural Network

The next RNN
step takes the
second input
vector and
hidden state #1
to create the
output of that
time step.

Recurrent Neural Network
Since the encoder and decoder are both RNNs, each time step one of the RNNs does some
processing, it updates its hidden state based on its inputs and previous inputs it has seen.
Let’s look at the hidden states for the encoder. Notice how the last hidden state is actually
the context we pass along to the decoder. The decoder also maintains a hidden states that it passes
from one time step to the next.

There are also hidden states passing
from one time step to the next.

Recurrent Neural Network
This animation will make it easier to understand the static graphics that describe these models. This
is called an “unrolled” view where instead of showing the one decoder, we show a copy of it for each
time step. This way we can look at the inputs and outputs of each time step.

There are also hidden states passing
from one time step to the next.

The Attention
The context vector turned out to be a bottleneck for these types of models. It made it challenging for the models to
deal with long sentences. A solution was proposed in Bahdanau et al., 2014 and Luong et al., 2015. These papers
introduced and refined a technique called “Attention”, which highly improved the quality of machine translation
systems. Attention allows the model to focus on the relevant parts of the input sequence as needed.

At time step 7, the attention mechanism enables the decoder to focus on the word "étudiant"
("student" in French) before it generates the English translation. This ability to amplify the signal
from the relevant part of the input sequence makes attention models produce better results than
models without attention.

The Attention
An attention model differs from a classic sequence-to-sequence model in two main ways:
First, the encoder passes a lot more data to the decoder. Instead of passing the last hidden state of
the encoding stage, the encoder passes all the hidden states to the decoder:

The Attention
Second, an attention decoder does
an extra step before producing its
output. In order to focus on the parts
of the input that are relevant to this
decoding time step,
the decoder does the following:
1.Look at the set of encoder hidden
states it received – each encoder
hidden states is most associated with
a certain word in the input sentence
2.Give each hidden states a score
3.Multiply each hidden states by its
softmaxed score, thus
amplifying hidden states with high
scores, and drowning out hidden
states with low scores
This scoring exercise is done at each
time step on the decoder side.

The Attention
Let us now bring the whole thing together in the
following visualization and look at how the
attention process works:
1.The attention decoder RNN takes in the
embedding of the <END> token, and an initial
decoder hidden state.
2.The RNN processes its inputs, producing an
output and a new hidden state vector (h4). The
output is discarded.
3.Attention Step: We use the encoder hidden
states and the h4 vector to calculate a context
vector (C4) for this time step.
4.We concatenate h4 and C4 into one vector.
5.We pass this vector through a feedforward
neural network (one trained jointly with the model).
6.The output of the feedforward neural networks
indicates the output word of this time step.
7.Repeat for the next time steps

The Attention
Another way to look at which part of the input sentence we’re paying attention to at each decoding step:

The Attention
Note that the model isn’t just
mindless aligning the first
word at the output with the
first word from the input. It
actually learned from the
training phase how to align
words in that language pair
(French and English in our
example). An example for
how precise this mechanism
can be comes from the
attention papers listed above:

You can see how the model
paid attention correctly when
outputing "European
Economic Area". In French,
the order of these words is
reversed ("zone économique
européenne") as compared
to English. Every other word
in the sentence is in similar
order.

Q&A

问题及讨论问题及讨论

