Lecture 2
16 March 2022
Goal: Derive Laplace's eq. From electicic nitrate.
Given $u: V \rightarrow \mathbb{R}, \quad \Delta u: V \rightarrow \mathbb{R} \quad$ sit.

$$
(\Delta u)_{x}=\sum_{y \in V(x)} c_{x y}\left(u_{y}-u_{x}\right)
$$

Def

$$
\begin{aligned}
& \Gamma \text { graph } \Gamma=(V, Y) \\
& \bigvee_{V} \text { veroicices, } Y C V \not \subset V \text { edges (uncricated) } \\
& x, y \quad \text { i, i. }(x, y) \in Y \Leftrightarrow(y, x) \in Y^{Y} \\
& \text { We say } x \sim y \text { if }(x, y) \in Y \text {. } \\
& \forall(x):=\{y \in V \mid x \sim y\} .
\end{aligned}
$$

$$
\begin{aligned}
& x \in V(x) \quad \Leftrightarrow \quad \exists \text { self loop } \\
& \operatorname{deg}(x)=\text { condinaliy of } V(x)
\end{aligned}
$$

Γ is locally finite if $\operatorname{deg}(x)<\infty$ for $x \in V$
Def

$$
\Gamma_{1}=\left(V_{1}, Y_{1}\right) \quad, \quad \Gamma_{2}=\left(V_{2}, Y_{2}\right)
$$

ϕ is a (morphism) from Γ_{1} to Γ_{2} if

Eg, $\quad \Gamma=\mathbb{Z}=\mathbb{Z}^{\prime}$

$$
\begin{array}{r}
\Gamma=\mathbb{Z}^{n} \\
\mathbb{Z}_{t}
\end{array}
$$

Def (1) An imfinlte prith in P is a suhgraph isomorptic to \mathbb{Z}
(2) One-ended intimite path in P is a suligraph issomorphic to \mathbb{Z}_{t}.
(3), path of length n is a subgraph isomiptic to $\quad: 0 \rightarrow \ldots .{ }_{n}$

Def Γ is path conneited it
for any two $x, y G V, \exists$ a path connecing x ti y,
Assumpielon 1
Reimbilk I is assumed to be puth connected.
Def. Combinatirial distance $d(x, y)$ is the minionse on s.t. \exists puth of length n conneciting $t_{0} x, y \in V$.

Atis 2.
Remarle We assume Γ is connitible ($\Leftrightarrow V$ is cuntable.)

Ex, locally finite $\Rightarrow \Gamma$ is countable.

is no external sure is (closed loop: sum of voltage around present. closed loop is zero if ho battery is present.

$$
r(x, y) T(x, y)=\text { Voltage drop from } x \text { t } y \text {. }
$$

(1). Reprerent currents as Kchaims.

Dct. 1 chein on P is real value foncitan cuer crievied edges s.t.

$$
i(x, y)=-i(y, x) \quad \in \mathbb{R} . \quad \forall x \sim y .
$$

I is fimite if it is nonzero over finitely many edges.

Note: $\quad i(x, x)=0$
\Rightarrow Self-loops are reduntunit'
(2). Represent extiernal curvent as O-chin.

Def. O-chnin is $j: V \rightarrow \mathbb{R}$.
j is finitily suppuited if nurzeon over falitidy many edges.

Det Let C vectur spuce of awl t-chains

$$
\text { s.t. } \quad \sum_{y \in V(x)} l i(x, y) \mid<\infty \quad \forall x \in V \text {. }
$$

Def Given 1-chaim i, boundany ∂i is O-chin deftned by $\left(\lambda_{i}\right)_{x}=\sum_{y \in V \in()} i(x, y)$
sum of currants at vartex i.

Det, Given 0 -chain j, buundeny $\partial j \in \mathbb{R}$ detimed by

$$
\partial j^{\prime}:=\sum_{x \in V} j(x)
$$

Ex: $\quad \partial \partial i=0 \quad$ for any $1-$ chai, i.
Def 1-chainn z is called a acyde if

$$
(\partial z)_{x}=0 \quad \forall x \in V
$$

Remark: 1 -chcim \sim difterentlal 1 form on Γ^{*} inuse Γ isplaner

$$
i(x, y)=-i(y, x) \quad \sim \quad w(x)=-w(-x) \quad G \mathbb{R} .
$$

$$
\partial_{i}=\sum_{y \in V(x)} i(x, y) \sim \underset{T}{d w}=0 \Leftrightarrow \underset{\gamma}{\int_{j} w}=0
$$ exterier denivative where r is clorimith pith.

$$
1 \text {-cochain } \sim 1 \text {-form on } \Gamma
$$

Γ^{*} dual graph

Defs (1) A linear finctional on vuter space of all finite 1 -chains is called a I-cochain.

..finite 0 -chains is O- cochaln.

$$
\delta_{x}(y)=\left\{\begin{array}{ll}
1 & \text { if } y=x \\
0 & \text { if } y \neq x,
\end{array}\right. \text { is o-chin }
$$

o-chaln: $j=\sum_{x \in V, 1} j(x) \delta_{x}$
X_{x} is fenctional dver 0 -chain

$$
x_{x}\left(\delta_{\tilde{x}}\right)=\left\{\begin{array}{lll}
1 & \text { if } & x=x^{2} \\
0 & \text { if } & x \neq \tilde{x}^{2}
\end{array}\right.
$$

0 -cochimi $\quad U(x)=\sum_{x \in V,} u(x) X_{x}$

$$
\langle u, j\rangle=\sum_{x \in V} u(x) j(x)
$$

1-chain and 1-cochain::

$$
\xi=\{x, \bar{x}\}
$$

Fix an crientutivon for edge.

$$
(x, y) \in X \Rightarrow(y, x) \notin X .
$$

Given $B, D \in X$,

$$
\delta_{B}(D)=\left\{\begin{array}{lll}
1 & \text { if } & B=D \\
0 & \text { if } & B \neq D
\end{array}\right.
$$

$$
1-\text { chain } i=\sum_{B \in X} i(B) \delta_{B}
$$

$$
\begin{aligned}
& x_{B}\left(\delta_{D}\right)=\left\{\begin{array}{ccc}
1 & \text { if } B=D \\
0 & \text { if } B \neq D
\end{array}\right. \\
& 1-\text { cochain } E=\sum_{B \in X} E(B) X_{B} \\
& \langle E, i\rangle=\sum_{B \in X} E(B),(B)
\end{aligned}
$$

Prop: Given 0 -cochaim u, cobrinnday $\partial^{*} u$ of u is the unlque 1 -cochain s.e.

$$
\left\langle\partial^{*} u, k\right\rangle=\langle u, \partial k\rangle
$$

for all finit 1 -chin K.

Ex.

$$
\begin{aligned}
& u: V \rightarrow \mathbb{R}_{r} \\
& \partial^{*} u\left(\delta_{x y}\right)=u_{y}-u_{x} \\
& \| \\
& \partial^{*} u(x y)
\end{aligned}
$$

Malm message:
Summation at vertices ∂ boundary ditterence along edges ∂^{*} cubonuday.

