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Integrable many-body systems play a signifi-
cant role in mathematical physics. The Calo-
gero-Moser (CM) and Ruijsenaars-Schneider
(RS) systems are the main examples.

These models exist in rational, trigonometric
(or hyperbolic) and elliptic versions, in which
the interaction between particles is described
by rational, trigonometric (hyperbolic) and
elliptic functions respectively.

The elliptic models are most general: the
other ones can be obtained from them by
appropriate degenerations. We will consider
the elliptic models.



The Weierstrass functions

The Weierstrass o-function is given by the
infinite product
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The Weierstrass (- and g-functions are con-
nected with the o-function as follows:

((z) = o'(z)/o(z)

o(z) = —('(z) = -85 log o (z)



The CM model

The equations of motion:

N
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where dot means the time derivative. The
elliptic CM model is Hamiltonian and com-
pletely integrable, i.e., it has N independent
integrals of motion in involution. Integra-
bility of the model was proved by different
methods by Perelomov (1977) and Wojcie-
chowski (1977).



The RS model

The RS model is a deformation of the CM
model (a “relativistic extension” ). The equa-
tions of motion are:
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A properly taken limit n — 0 leads to equa-
tions of motion of the CM model. Integra-
pility of the RS system was proved by Rui-

jsenaars (1987).



Time discretization of the RS model
(Nijhoff, Ragnisco, Kuznetsov, 1996)

Let .1‘;] be coordinate of the :th particle at
the nth step of discrete time. The equations
of motion are:
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The properly taken continuous time limit yields
the equations of motion of the RS model.



The deformed RS model

The RS model admits a deformation (KI’iChEVEI’,
A.Z., 2022). The equations of motion are:

N
+ _— - o(wij £ 2n)o (x5 F 1)
U | I U (Ii‘j)j U (IEJ) o o(xj; £n)o(x;)
jFi U

and g is the deformation parameter. At g = 0
we have the RS system. It is evident that
g # 0 can be eliminated from the formulas
by re-scaling of the time variable ¢ — g=1/2¢.
In what follows we fix g to be g = o(2n).



Time discretization of the deformed RS model

The equations of motion in discrete time are:
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where p is a parameter related to the lattice
spacing in the time lattice.



The RS model

The N-particle elliptic RS model is a com-
pletely integrable Hamiltonian system. The
canonical Poisson brackets: {z;,p;} = d;;.
The integrals of motion in involution:
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Important particular cases:
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which is the Hamiltonian Hy of the chiral RS
model and
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One can also introduce integrals of motion
|_, as
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Renormalized integrals of motion:
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The higher Hamiltonians of the RS model
can be obtained from the ECILIEIUOI"I of the
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For example:
Hy = Jq,

Ho = Jo — ¢(n)J%,

Ha = Ja — (COn) +C@0) a2 + (330 — S ol ) 2

(Prokofev, A.Z., 2021). We also introduce
the Hamiltonians

HT%:HHZI:HH

On the Toda lattice side, the RS dynamics
corresponds to the dynamics of poles of ellip-
tic solutions and the Hamiltonians Hf{ gener-
ate the flows i'?tnié#n, where tn, tn are canoni-
cal higher times of the Toda lattice hierarchy.



The Ruijsenaars-Schneider dynamics is the
same as dynamics of poles of elliptic solutions
to the 2D Toda equation in the Toda times
t1, 11 (Krichever, A.Z., 1995).

Moreover, this correspondence extends to a
complete isomorphism between the elliptic
Ruijsenaars-Schneider model (with higher Hamil-
tonian flows) and elliptic solutions to the whole
2D Toda lattice hierarchy (Prokofev, A.Z.,
2021).



The deformed RS model as a dynamical system
for pairs of RS particles

n 1N 1
e e P
—e @& 0 ® @
o A X Xy Xs Xo

The restriction of the RS dynamics of 2N
particles to the subspace P in which the par-
ticles stick together in N pairs such that

T2j — X1 =1, i=1,...,N

leads to the equations of motion of the de-
formed RS system for coordinates of the pairs
(Krichever, A.Z., 2022). It is natural to in-
troduce the variables

Ni = 19i_1. 1=1,....N

which are coordinates of the pairs.



We pass from the initial 4 N-dimensional phase
space F with coordinates ({z;},{p;}) to the
2N-dimensional subspace P C F of pairs de-
fined by the constraints
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The coordinates in P are ({X;},{F;}). The
subspace P is preserved by the H7-flow 8; =
J¢; — O, but is destroyed by the H‘l‘}—flmw O, +
df,. Therefore, to define the dynamical sys-
tem we should fix T;" = 3 (t; + ;) to be 0,
i.e. put I; = —t7, and consider the evolution
with respect to the time t = T; = & (t; — 7).



Moreover, the subspace P is invariant not
only with respect to the Hy -flow but also with
respect to all higher H_-flows. This gives
the possibility to obtain integrals of motion
Jn of the deformed RS model by restriction
of the RS integrals of motion Jn, J_n to the
subspace P.

We denote the restriction of J,. by Jg:
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Our main result is the explicit expressions for
integrals of motion of the deformed RS sys-

tem:
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The generating function of the integrals of

motion:
R(= ) = | et (sby—iioayn, N)=o(2n)=" U (20, ) )
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The equation R(z,\) = 0 defines the spectral
curve which is an integral of motion.



The generating function R(z,u) is given by
o(u—2Nn)
o(u)
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The spectral curve

The characteristic equation R(z,u) = 0 de-
fines a Riemann surface I which is a 2N-
sheet covering of the u-plane. Any point of
it is P = (z,u), where z,u are connected by
equation R(z,u) = 0. There are 2N points
above each point u. The Riemann surface I
IS invariant under the simultaneous transror-
mations

u— u+ 2w, z— e 26w,

!
w— w420, 2 e~ 26(w)n,,

The factor of I over these transformations is
an algebraic curve I' which covers the elliptic

curve with periods Qw,zwf. It is the spectral
curve of the deformed RS model.



The spectral curve I admits a holomor-
phic involution . with two fixed points.
Indeed, the equation R(z,u) = 0 is invariant
under the involution

Ll (z,u) = (::_1_._ 2Nn — u)

The fixed points lie above the points us such
that us = 2N — ux Modulo the |attice with
periods 2w, 2w, i.e. uy = Nn — wq, Where wqy
s either O or one of the three half-periods
W] = w, Wy = W w3 = w + . Substituting
this into the equation of the spectral curve
and taking into account that J_jp = Ji, we
conclude that the fixed points are (£1,Nn)
and there are no fixed points above wu, =
Nn — wq WIth wq 7+ 0.



Commutation representation (Manakov’s triple)

There is no Lax representation for the de-
formed RS system. Instead, it admits the
commutation representation in the form of
the Manakov's triple.

Lame-Hermite function:

| - olz+N) _ (\)z
PN = N L:

Recall that
U= =] o(zij +2n)o(zi; Fn)
I CTESINEICET)




Introduce N x N matrices L, M, R:

Lij(2,A) = &b (zij — n,A) + 2 o (2n)U;7 d(zi; — 21, A)
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The equations of motion of the deformed RS

model are equivalent to the following com-
mutation relation:

L+ [L.,M]) = R(L — =I)

(Manakov’s triple representation).

From tr R = 0 it follows that

det(zl — L(z,\)

IS conserved in time. It is the generating
funcion of integrals of motion.



The Backlund transformation

It is known that the integrable many-body systems of
CM and RS type are dynamical systems for poles of
singular solutions to nonlinear integrable differential
and difference equations. The nonlinear integrable
equations are known to serve as compatibility con-
ditions for linear differential or difference equations
for the “wave function” . Poles of solutions to the
nonlinear equations (zeros of the tau-function) are si-
multaneously poles of the i)-function, so the latter
are subject to equations of motion of the CM or RS
type. In fact zeros of the »-function are subject to the
same equations, and this leads to the idea to obtain
the Backlund transformation of the CM or RS system
as passage from poles to zeros.



The Tirst linear problem for the Toda lattice
with constraint of type B:

o) = () (v +n) — vz —n))

(Krichever, A.Z., 2022), where v(x) is ex-
pressed through the tau-function 7(x) as
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For elliptic solutions
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We can represent solutions for > in the form
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where ;. is a parameter and
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The zeros y; and the poles z; of the ¢ -function
obey the system of equations
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The discrete time dynamics

The Backlund transformation
.I‘j — yj

can be regarded as a time evolution by one
step of the discrete time.

Denoting the discrete time variable by n, we
then write

.M o .n+1



Then the Backlund transtformations can be
read as the equations of motion in discrete
time:
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The continuous time limits

These equations admit different continuum limits. For
one of them, we introduce the variables

i — T
XJ- = x; —mnmn

and assume that these variables behave smoothly when
the time changes, i.e., X' = X7 4+ O(g) as £ — 0,
where we introduce the lattice spacing = in the time
lattice, so that the continuous time variable is t = ns.

We should expand in powers of £ taking into account
that

X' = X; +eX; + %E% + 0(=?)
as £ — 0. It is enough to expand up to the order
e. For consistency one should require that p=! is of
order . Putting ! = =, one obtains (in the leading
order =) the equations of motion of the deformed RS

system.



Another possibility is to assume that the orig-
inal variables 1:}.* are smooth when the time
changes, i.e.,

n+xl __ R
T —Ijj:_.rj—I—

; 27 4+ O(e?)
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In general position, i.e. iIf =2 -1 = O(1)
as = — 0, the leading order is = and the ex-
pansion gives the RS equations. However,
if =2 = 1 + as, then the first order gives
the identity 0 = 0 and one should expand up
to the second order in . In this case one
obtains the equations for dynamics of poles
of elliptic solutions to the semi-discrete BKP
equation (Rudneva, A.Z., 2020).



Concluding remarks

We proved integrability of the deformed RS
system by presenting all integrals of motion
in explicit form. We also obtained the dis-
crete time version of the deformed RS system
by considering the Backlund transtformations.

T he connection between the standard RS sys-
tem and the deformed one is not trivial. OnN
one hand, the latter is an extension of the
former and includes it as a particular case.
However, on the other hand, the deformed
RS system is contained in the RS system
since it can be regarded as its reduction in
the sense that its equations of motion are
obtained by restriction of the RS dynamics
TO the subspace P of pairs.
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