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I will describe some models of random particle systems.
The origin of these models is representation theory of infinite-

dimensional classical groups, but I will focus on algebraico-combinatorial
aspects of the theory.
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Basic terminology

A collection X of N points on the real line R is called an N -
particle configuration.

ConfN (R) is the space of N -particle configurations.
An N -particle ensemble on R is given by a probability measure

M on ConfN (R). Then we may speak about random configurations.
Problem to be discussed (for concrete models): how to construct

ensembles with ∞ many particles?
It is non-trivial, because in general it’s not easy to deal with

probability measures on ‘big’ spaces, such as Conf∞(R).
A possible way: use a large-N limit transition.
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1 Preliminaries: Discrete beta-ensembles on
Z of representation-theoretic origin

1.1 Dyson’s circular beta-ensembles

Let T ⊂ C be the unit circle with center at 0. Let ConfN (T) denote
the set of N -particle configurations (u1, . . . , uN ) on T.

Let Prob(·) denote the set of probability measures on a given
space.

We are interested in probability measuresMN ∈ Prob(ConfN (T)).
Given such a measure, we may speak of an ensemble of random N -
particle configurations on T.

Let β > 0 be a parameter. The N -particle Dyson’s circular
beta-ensemble is given by the probability measure

MN,β(du) :=
1

CN,β

∏
1≤i<j≤N

|ui − uj |β · µTN (du).

Here u = (u1, . . . , uN ) ∈ ConfN (T), µTN (du) is the Lebesgue
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measure on the torus TN = T×· · ·×T, and CN,β is the normalization
constant.

This concept is due to Dyson [J. Math. Phys. 1962].
The origin. For three special values β = 1, 2, 4 (corresponding to

R, C, and H), the Dyson ensembles admit a simple matrix/Lie group
interpretation. Namely, we consider three infinite seriesG(N)/K(N)
of compact symmetric spaces

U(N)/O(N),
(
U(N)× U(N)

)
/diagU(N), U(2N)/Sp(N).

Consider the double cosets K(N)gK(N), g ∈ G(N). In the
case β = 2, the double cosets are the same as conjugation clases in
U(N).

In all three cases, the double cosets are parametrized by config-
urations u = (u1, . . . , uN ) ∈ ConfN (T).

So, we have a natural projection

G(N)→ K(N) \G(N)/K(N) = ConfN (T).
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It turns out that the pushforward, under this projection, of the
normalized Haar measure is just MN,β for β = 1, 2, 4 (a particular
case of Elie Cartan’s formula).

For general β > 0 — extrapolation.

1.2 Dual picture: problem of harmonic analysis for
∞-dimensional symmetric spaces

Here ‘dual picture’ means that instead of a compact symmetric space
G(N)/K(N) we consider the Hilbert space L2

(
G(N)/K(N)

)
and

the natural unitary representation TN of the group G(N) on this
space.

Its decomposition is well known: this is an example of a (relatively
simple) problem of spherical noncommutative harmonic analysis.

Question (β = 1, 2, 4):
(i) Is it possible to give a sense to the large-N limit

T∞ := lim
N→∞

TN

6



as a unitary representation of the direct limit groupG(∞) :=
⋃
N

G(N)?

(ii) How to decompose T∞ into irreducibles (harmonic analysis)?
The question is nontrivial, because there is no invariant measure

onG(∞)/K(∞), so one cannot extend the definition of L2(G(N)/K(N))
directly.

Answer:
1) Yes, the limit representation T∞ can be defined. It turns

out that its construction involves additional continuous parameters
(which is not a defect but a bonus!).

2) The decomposition of T∞ into irreducibles is governed by an
ensemble with infinitely many particles on R.

3) This ensemble in turn is obtained as a large-N limit of certain
discrete ensembles on the lattice Z, which look as a discrete analog
of Dyson beta ensembles.

4) Moreover, the whole construction admits a purely combinato-
rial interpretation which makes sense for all β > 0.

Thus, we can convert our problem of harmonic analysis for infinite-
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dimensional symmetric spaces into a problem of algebraic combina-
torics with a slight probabilistic flavor.

1.3 Discrete beta-ensembles on the lattice Z

In what follows we will assume

β = 2τ, τ ∈ {1, 2, 3, . . . }

so that β will be a positive even integer. It’s for the sake of simplicity
only; the results hold for any β > 0.

The discrete ensembles in question live on the lattice Z (which
is the dual to the circle T!). So, instead of the continuous space
ConfN (T), we are dealing with the countable set ConfN (Z). Its
elements are N -particle configurations on Z:

L = (`1 > · · · > `N ) ⊂ Z.

These are in fact veiled highest weights λ = (λ1 ≥ · · · ≥ λN ):

λ→ L , `i = λi + (N − i)τ, 1 ≤ i ≤ N.
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I am going to introduce a probability measure

M z,z′,w,w′

N,2τ ∈ Prob
(

ConfN (Z)
)
, τ ∈ {1, 2, 3, . . . }.

Here (z, z′, w, w′) is a quadruple of continuous parameters subject
to some constraints. For instance, sufficient conditions are

z, w ∈ C, z′ = z, w′ = w, Re(z + w) > −1

2
.

Definition (Probability measure on ConfN (Z)). We define the weight
of a configuration L = (`1, . . . , `N ) ∈ ConfN (Z) as

M z,z′,w,w′

N,2τ (L ) :=
1

CN,2τ

N∏
i=1

FN (`i) · VN,2τ (L ),

Here

FN (`) :=
Γ(−z − (N − 1)τ + `)Γ(−z′ − (N − 1)τ + `)

Γ(w + `+ 1)Γ(w′ + `+ 1)
, ` ∈ Z,
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and

VN,2τ (L ) :=
∏

1≤i<j≤N
(`i − `j)2

×

∣∣∣∣∣∣
∏

1≤i 6=j≤N
(`i − `j − 1)(`i − `j − 2) . . . (`i − `j − (τ − 1))

∣∣∣∣∣∣
Remark. 1) For τ = 1, the second double product disappears.

2) If τ > 1, VN,2τ (L ) vanishes whenever `i − `i+1 < τ − 1.
Thus, the measure M z,z′,w,w′

N,2τ lives on the subset of ‘τ -sparse config-
urations’: any two particles are separated by at least τ − 1 holes.

3) For large distances between the `i’s,

VN,2τ (L ) ≈
∏
i<j

(`i − `j)2τ .

4) As in Dyson’s context, VN,2τ (L ) is responsible for pair inter-
action between the particles, of ‘log-gas type’. Only now we have a
lattice model.
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Theorem. Let the parameters τ and z, z′, w, w′ be fixed. After
a scaling and yet another transformation, the measures M z,z′,w,w′

N,2τ

converge, as N →∞, to a probability measure M z,z′,w,w′

∞,2τ that lives
on a space of infinite particle configurations on the real line R.

References: Borodin-Olshanski [Ann. Math. 2005], Olshanski [J.
Funct. Anal. 2003] and [Funct. Anal. Appl. 2003].

2 Macdonald-level hypergeometric ensem-
bles

2.1 Notation

• q and t are the two parameters of Macdonald polynomials. We
assume:

0 < q < 1, 0 < t < 1, t = qτ , τ = 1, 2, 3, . . .

The last assumption is for simplicity only.
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• Two additional parameters ζ±:

ζ− < 0 < ζ+.

• The two-sided q-lattice L = L− ∪ L+ ⊂ R:

L− := ζ−q
Z = {ζ−qm : m ∈ Z}, L+ := ζ+q

Z = {ζ+q
m;m ∈ Z}.

Because 0 < q < 1, the lattice nodes accumulate near 0 and diverge
in the direction of ±∞:

. . . ζ−q
−1 ζ− ζ−q . . . . . . ζ+q ζ+ ζq . . .

• ConfN (L) is the set of N -particle configurations on L, which
are τ -sparse (as before, this means that any two particles are sepa-
rated by at least τ − 1 holes).
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2.2 N-particle hypergeometric ensembles

Below we use a standard notation from q-calculus:

(x; q)∞ =

∞∏
n=0

(1− xqn), x ∈ C.

It is closely related to the notion of q-Gamma function:

Γq(A) :=
(q; q)∞

(qA; q)∞
(1− q)1−A.

Definition. We fix a quadruple (α, β, γ, δ) is of parameters subject
to conditions specified below.

The following formula determines a ‘hypergeometric’ probability
measure Mα,β,γ,δ

N ;q,t on the set ConfN (L).
If X = (x1 > · · · > xN ) ∈ ConfN (L), then

Mα,β,γ,δ
N ;q,t (X) :=

1

C(N ; q, t;α, β, γ, δ)
·
N∏
i=1

Fα,β,γ,δN ;q,t (xi) · VN ;q,t(X),
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where C(N ; q, t;α, β, γ, δ) is a normalization constant;

VN,q,t(X) :=
∏

1≤i 6=j≤N

τ−1∏
r=0

|xi − xjqr|

is a (q, t)-analog of
∏
i<j(xi − xj)2τ (or rather its version on Z);

Fα,β,γ,δN ;q,t (x) := (1− q)|x| (αx; q)∞(βx; q)∞
(γt1−Nx; q)∞(δt1−Nx; q)∞

, x ∈ L,

is a (q, t)-analog of the previously defined function

FN (`) =
Γ(−z − (N − 1)τ + `)Γ(−z′ − (N − 1)τ + `)

Γ(w + `+ 1)Γ(w′ + `+ 1)
, ` ∈ Z.

The parameters (α, β, γ, δ) should be such that for each N :

• Fα,β,γ,δN ;q,t (x) ≥ 0 for any x ∈ L,
• the normalization is possible.
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2.3 Conditions on (α, β, γ, δ): principal and degenerate
series

There are two variants of sufficient conditions on (α, β, γ, δ) which
guarantee that the hypergeometric measures are well-defined for all
N :

1) Principal series:

α = β ∈ C \ R, γ = δ ∈ C \ R, αβ < γδq.

Then Mα,β,γ,δ
N ;q,t (X) > 0 for all X ∈ ConfN (L).

2) Degenerate series:

β < 0 < α, α−1 ∈ L+, β−1 ∈ L−, γ = δ ∈ C \ R.

Then Mα,β,γ,δ
N ;q,t (X) > 0 only for configurations X contained in the

truncated lattice

L[β−1q, α−1q] := {x ∈ L : β−1q ≤ x ≤ α−1q}.
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This happens because the conditions α−1 ∈ L+ and β−1 ∈ L− imply
that the product (αx; q)∞(βx; q)∞ vanishes for all x ∈ L outside
the lattice interval [β−1q, α−1q].

2.4 Large-N limit

Let Conf∞(L) denote the set of particle configurations X ⊂ L such
that:
• |X| =∞.
• X is bounded away from ±∞.
• If τ > 1, then X is τ -sparse.
Note that the spaces ConfN (L) are countable while the space

Conf∞(L) has the power of continuum. It is a totally disconnected
topological space.

Theorem (Main result). Let (α, β, γ, δ) be in the principal or degen-
erate series. We still assume t = qτ with τ ∈ {1, 2, 3, . . . }. There
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exists a limit

lim
N→∞

Mα,β,γ,δ
N ;q,t = Mα,β,γ,δ

∞;q,t ∈ Prob
(

Conf∞(L)
)
.

In other words, there exists a limit probability measure which
determines a particle ensemble on the two-sided q-lattice L, with
infinitely many particles accumulating at 0 /∈ L.

A similar claim holds in fact for any t ∈ (0, 1). Only the descrip-
tion of the configurations becomes more involved.

References: Olshanski [Selecta Math. 2021] and [Comm. Math.
Phys. 2021].

2.5 The special case τ = 1 (that is, q = t)

In this case one can say more.

Theorem. If q = t, then the limit ensemble on L given by the mea-
sureMα,β,γ,δ

∞;q,q is determinantal, meaning that its correlation functions
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ρn, n = 1, 2, . . . , are given by a determinantal expression of the form

ρn(x1, . . . , xn) = det[Kα,β,γ,δ
q (xi, xj)]

n
i,j=1,

where Kα,β,γ,δ
q (x, y) is a kernel on L× L, not depending on n.

This kernel admits an explicit expression of the form

Kα,β,γ,δ
q (x, y) =

A(x)B(y)−A(y)B(x)

x− y
, x, y ∈ L.

Here A(x) and B(x) are certain functions on L, expressed through
the q-hypergeometric function 2φ1.

Because the correlation functions are explicitly computable, one
can say that the model with q = t is exactly solvable.

Theorem. The limit measure Mα,β,γ,δ
∞;q,q is diffuse, meaning that it

has no atoms.

References: Gorin-Olshanski [J. Funct. Anal. 2016], Cuenca-
Gorin-Olshanski [IMRN 2021].
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2.6 Degeneration Mα,β,γ,δ
N ;q,t  M z,z′,w,w′

N ;2τ

Recall that we started with the lattice Z and then proceeded to
the two-sided q-lattice L. Our formulas in these two cases have a
similarity.

Moreover, for each fixed N , the ensemble on L can be degener-
ated to the ensemble on Z.

Namely, assume for simplicity ζ± = ±1, so that L = −qZ ∪ qZ.
There is a natural bijection Z↔ qZ: `↔ q` = x.
Likewise, we have a natural bijection

ConfN (Z)↔ ConfN (L+), L ↔ X

L = (`1 > · · · > `N )↔ (q`1 < · · · < q`N ) = X.

Fix a quadruple (z, z′, w, w′) from the principal series and set

α = qw+1, β = qw
′+1, γ = q−z, δ = q−z

′
.

We consider the limit regime in which q ↗ 1. Then the q-lattice
L ⊂ R becomes more and more dense.
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Theorem. In this limit regime, the random configurations on L gov-
erned byMα,β,γ,δ

N ;q,t tend to concentrate near the point 1. In particular,
they tend to run away from the negative part L− of the lattice.

More precisely, for any fixed small ε > 0

lim
q↗1

∑
X⊂(1−ε,1+ε)

Mα,β,γ,δ
N ;q,t (X) = 1.

Next, for any L ∈ ConfN (Z) we have

lim
q↗1

Mα,β,γ,δ
N ;q,t (qL ) = M z,z′,w,w′

N,2τ (L ).

Remark. The point is that, in this limit regime, the negative part of
the q-lattice becomes negligible. However, in the framework of our
approach one cannot build a (q, t)-version of discrete beta-ensembles
solely on L+. The two-sided lattice L seems to be absolutely neces-
sary.
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It would be interesting to find a representation-theoretic inter-
pretation of our construction, at least for the case q = t. A natural
suggestion would be to work with representations of the quantized
algebras Uq(gl(N),C). However, I don’t see how to reconcile this
algebra with the two-sided lattice L.

Reference: Olshanski [Comm.Math.Phys. 2021].

3 Big q-Jacobi symmetric functions

3.1 Big q-Jacobi symmetric polynomials

We focus on the degenerate series of parameters (α, β, γ, δ):

β < 0 < α, γ = δ ∈ C \ R,

and deal with the truncated q-lattice

Lα,β := L[β−1q, α−1q] = β−1qZ≥1 ∪ α−1qZ≥1 .
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Let ConfN (Lα,β) denote the set of N -particle configurations on
this lattice. As above, for τ > 1 we additionally suppose that the
configurations are τ -sparse.

Let
Sym(N) := R[x1, . . . , xN ]SN

denote the R-algebra of symmetric polynomials with N variables.
There is a natural embedding

Sym(N)
ι−→ bounded functions on ConfN (Lα,β)

f 7→ f(X), X = (x1, . . . , xN ) ∈ ConfN (Lα,β).

Recall that for each N we have defined a hypergeometric prob-
ability measure Mα,β,γ,δ

N ;q,t on ConfN (Lα,β). Using the embedding ι
we can realize Sym(N) as a dense subspace of the Hilbert space
`2
(

ConfN (Lα.β),Mα,β,γ,δ
N ;q,t

)
. Let (−,−) be the induced scalar prod-

uct in Sym(N).

Theorem (Stokman). Let λ range over the set Y(N) of partitions of
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length ≤ N and let Pλ|N (X; q, t) denote the N -variate Macdonald
polynomial indexed by λ.

There exists a basis {ϕλ|N (X) : λ ∈ Y(N)} in Sym(N) such
that

ϕλ|N (X) = Pλ|N (X) + lower degree terms

and
(ϕλ|N , ϕµ|N ) = 0, λ 6= µ.

References: Stokman [SIAM J. Math. Anal. 1997], Stokman-
Koornwinder [Canad. J. Math. 1997].

The polynomials ϕλ|N are called the N -variate symmetric big q-
Jacobi polynomials. In the simplest case N = 1 these are the classic
univariate big q-Jacobi polynomials discovered by Andrews and Askey
[In: Lecture Notes in Math. vol. 1171, 1984].
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3.2 ‘Almost-stable" expansion on Macdonald polyno-
mials

Theorem. The expansion of N -variate big q-Jacobi polynomials in
the basis of Macdonald polynomials has the form

ϕλ|N =
∑
µ:µ⊆λ

(tN ; q, t)λ
(tN ; q, t)µ

π(λ, µ; q, t;α, β, γ, δ)Pµ|N ,

where

(tN ; q, t)λ :=

l(λ)∏
i=1

(tN+1−i; q)λi =
∏

(i,j)∈λ

(1− qλi+j−1tN+1−i),

(tN ; q, t)µ :=

l(µ)∏
i=1

(tN+1−i; q)µi =
∏

(i,j)∈µ

(1− qµi+j−1tN+1−i)

are certain products of q-Pochhammer factors and π(λ, µ; q, t;α, β, γ, δ)
are certain coefficients, which do not depend on N and admit an ex-
plicit expression.
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We call this expansion almost stable, because the dependence on
N is localized in the fraction

(tN ; q, t)λ
(tN ; q, t)µ

The proof (Olshanski [Comm. Math. Phys. 2021]) relies on
results of Rains [Transf. Groups 2005] and the theory of interpolation
Macdonald polynomials due to Okounkov, Knop, and Sahi.

3.3 Big q-Jacobi symmetric functions

Let
Y =

⋃
N

Y(N)

denote the set of all partitions (=Young diagrams) and let

Sym := lim←− Sym(N)

denote the R-algebra of symmetric functions.
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Recall the embedding

Sym(N)
ι−→ bounded functions on ConfN (Lα,β),

f 7→ f(X), X = (x1, . . . , xN ) ∈ ConfN (Lα,β).

Likewise, we have a natural embedding

Sym
ι−→ bounded functions on Conf∞(Lα,β),

F 7→ F (X), X = {xi} ∈ Conf∞(Lα,β),

where Conf∞(Lα,β) is the space of ∞-particle τ -sparse configura-
tions on the truncated q-lattice Lα,β .

We can regard Sym as an algebra of bounded functions on the
(totally disconnected topological) space Conf∞(Lα,β).

Note that for fixed partitions λ, µ ∈ Y,

lim
N→∞

(tN ; q, t)λ = 1, lim
N→∞

(tN ; q, t)µ = 1.
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It follows that, as N → ∞, the N -variate big q-Jacobi polyno-
mials converge, in a natural sense, to certain symmetric functions

Φλ = Φ(−; q, t;α, β, γ, δ)

=
∑
µ:µ⊆λ

π(λ, µ; q, t;α, β, γ, δ)Pµ(−; q, t),

where the Pµ(−; q, t), µ ∈ Y, are the Macdonald symmetric func-
tions.

We call the functions Φ(−; q, t;α, β, γ, δ) the big q-Jacobi sym-
metric functions. We regard them as bounded functions on Conf∞(Lα,β).

By Stokman’s theorem, the measures Mα,β,γ,δ
N ;q,t are the orthogo-

nality measures for the N -variate big q-orthogonal polynomials ϕλ|N .
The next result is its analog in the context of symmetric functions.

Theorem. The limit measure on infinite configurations in the trun-
cated lattice,

Mα,β,γ,δ
∞; q,t = lim

N→∞
Mα,β,γ,δ
N ; q,t ∈ Prob(Conf∞(Lα,δ)),
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is the orthogonality measure for the symmetric functions
Φ(−; q, t;α, β, γ, δ).

That is, the big q-Jacobi symmetric functions form an orthogonal
basis in the Hilbert space

L2
(

Conf∞(Lα,β), Mα,β,γ,δ
∞; q,t

)
.

This theorem is related to the general idea of constructing analogs
of various systems of classical orthogonal polynomials in the algebra
Sym of symmetric functions.

Other results in this direction: Cuenca-Olshanski [Mosc.Math.J.,
2020]. There we show that part of the q-Askey scheme can be
transferred into Sym.

In a different form, the idea of liftingN -variate analogs of orthog-
onal polynomials to the algebra Sym is present in earlier papers by
Rains [Transf. Groups, 2005], Sergeev-Veselov [Adv. Math. 2009],
Desrosiers-Hallnäs [SIGMA, 2012].
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4 Stochastic links connecting N-particle en-
sembles with varying N = 1, 2, 3, . . .

4.1 Sketch of abstract formalism

By a stochastic link Λ : Ω 99K Ω′ between two spaces Ω and Ω′ we
mean a Markov kernel Λ(x, dy) on Ω×Ω′. This means that for any
fixed x ∈ Ω, Λ(x,−) is a probability measure on Ω′.

In particular, if both spaces are discrete, then Λ is simply a
stochastic matrix of format Ω × Ω′: its entries Λ(x, y) are non-
negative and all row sums equal 1.

A stochastic link Λ : Ω 99K Ω′ can be regarded as a kind of
generalized map; the difference with conventional maps is that the
image of a point is not a single point but a probability distrubution.
Like an ordinary map, Λ gives rise to a map of probability measures:

Prob(Ω)→ Prob(Ω′), M 7→MΛ.
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Namely, if M ∈ Prob(Ω), then

(MΛ)(dy) =

∫
x∈Ω

M(dx)Λ(x, dy).

In the case of discrete spaces, this is simply the operation of multi-
plying a row vector by a matrix .

Let us consider the category whose objects are (sufficiently good)
spaces and morphisms are stochastic links. Assume now that we
are given an infinite chain of spaces connected by stochastic links
ΛNN−1 : ΩN 99K ΩN−1,

Ω1

Λ2
1
L99 Ω2

Λ3
2
L99 . . .

ΛN−1
N−2
L99 ΩN−1

ΛN
N−1
L99 ΩN

ΛN+1
N
L99 . . .

Under suitable assumptions, one can prove the existence of a kind of
projective limit

Ω∞ = lim←−(ΩN ,Λ
N
N−1).

Definition. Assume that each ΩN is equipped with a probability
measure MN ∈ Prob(ΩN ). We say that {MN} is a coherent family
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of measures if

MNΛNN−1 = MN−1, ∀N ≥ 2.

Theorem. There is a 1-1 correspondence between coherent families
{MN} of measures and probability measures M∞ ∈ Prob(Ω∞).

Thus, any coherent family on a chain {ΩN ,Λ
N
N−1} gives rise to

a probability measure M∞ ∈ Prob(Ω∞).
In this sense (Ω∞,M∞) serves as a large-N limit of the proba-

bility spaces (ΩN ,MN )).

4.2 Stochastic links ΛN
N−1 : ConfN(L) 99K ConfN−1(L)

Return to our setting: we take as ΩN the set ConfN (L) of τ -sparse
N -particle configurations on L. We are going to define stochastic
links between these sets.

Theorem. For eachN ≥ 2 there exists a stochastic matrix ΛNN−1(X,Y )
of format ConfN (L) × ConfN−1(L), which is consistent with the
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Macdonald polynomials in the sense that∑
Y ∈ConfN−1(L)

ΛNN−1(X,Y )
Pλ|N−1(Y ; q, t)

(tN−1; q, t)λ
=
Pλ|N (X; q, t)

(tN ; q, t)λ

for any X ∈ ConfN (L) and any λ ∈ Y(N − 1).
Furthermore, the entries ΛNN−1(X,Y ) are nonzero iff the config-

urations X and Y interlace in a certain sense.
Such a matrix is unique.

4.3 Identification of the projective limit space

Theorem. The projective limit of the sequence of sets

Conf1(L) L99 Conf2(L) L99 Conf3(L) L99 . . .

connected by the stochastic links ΛNN−1 can be identified, in a natural
way, with the space Conf∞(L) of infinite τ -sparse particle configu-
rations on L.
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Reference: Olshanski [Selecta Math. 2021].
The theorem says that Conf∞(L) is the universal object with the

property that there are stochastic links

Λ∞N : Conf∞(L) 99K ConfN (L), ∀N ≥ 1,

such that
Λ∞N ΛNN−1 = Λ∞N−1, ∀N ≥ 2.

4.4 The coherency relation

Fix a quadruple (α, β, γ, δ) from the principal or degenerate series
and consider the corresponding hypergeometric measuresMα,β,γ,δ

N ; q,t ∈
Prob (ConfN (L)).

Theorem. These measures satisfy the coherency relation:

Mα,β,γ,δ
N ; q,t ΛNN−1 = Mα,β,γ,δ

N−1; q,t, N ≥ 2.
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When written explicitly, this becomes a nontrivial combinatorial
summation formula: for each Y ∈ ConfN−1(L),∑

X∈ConfN (L)

Mα,β,γ,δ
N ; q,t (X)ΛNN−1(X,Y ) = Mα,β,γ,δ

N−1; q,t(Y ).

This formula is proved first for the degenerate series, by using
the big q-Jacobi polynomials. Next, the result is extended to the
principal series by analytic continuation.

This result, combined with the abstract formalism, leads to the
main theorem: the existence of the large-N limit measure Mα,β,γ,δ

∞; q,t .
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