Krichever tau-function: old and new

Andrei Marshakov

I.Krichever CAS, Skoltech

Integrable Systems and Algebraic Geometry, BIMSA

June-July 2024

Plan

- Old story:
 - Definition: (I.M.Krichever, The τ -function of the universal Whitham hierarchy, matrix models and topological field theories, arXiv:hep-th/9205110)
 - Actually $\mathcal{F} = \log \tau$;
 - terminology ...
 - Matrix models & Topological strings;
 - Seiberg-Witten theory and integrable systems;
- Peculiarities:
 - Residue formula:
 - WDVV equations;
- New story:
 - Nekrasov functions, 2d conformal theories and isomonodromic deformations;
 - 2d gravity and Verlinde formula;

Notations:

• Topology of compact oriented Riemann surface: genus g, an example with g=3:

Figure: Riemann surface Σ of genus g=3 with chosen basis of A and B cycles.

- dim $H_1(\Sigma_g) = 2g$, (symplectic) intersection form $A_\alpha \circ B_\beta = \delta_{\alpha\beta}$.
- Dual basis in $H^1(\Sigma_g)$ of holomorphic first kind Abelian differentials $\bar{\partial}(d\omega_\alpha)=0$, normalized to the A-cycles

$$\oint_{A_\beta} d\omega_\alpha = \delta_{\alpha\beta}$$

Period matrix

$$\oint_{B_{\alpha}} d\omega_{\beta} = T_{\alpha\beta}$$

Riemann Bilinear Relations

Period matrix is symmetric due to

$$\begin{split} 0 &= \int_{\Sigma} d\omega_{\beta} \wedge d\omega_{\gamma} = \int_{\partial \Sigma} \omega_{\beta} d\omega_{\gamma} = \\ &= \sum_{\alpha} \left(\oint_{A_{\alpha}} d\omega_{\beta} \oint_{B_{\alpha}} d\omega_{\gamma} - \oint_{A_{\alpha}} d\omega_{\gamma} \oint_{B_{\alpha}} d\omega_{\beta} \right) = T_{\beta\gamma} - T_{\gamma\beta} \end{split}$$

Proof from the Stokes theorem on cut Riemann surface:

Figure: Cut Riemann surface (4g-gon) with the boundary $\partial \Sigma$. The boundary values of Abelian integrals $v_{\alpha}^{\pm} = \omega_{\alpha}^{\pm}$ on two boundaries of the cut differ by the period integral of the corresponding differential $d\omega_{\alpha}$ over the dual cycle.

Riemann Bilinear Relations

Meromorphic: second kind Abelian differentials,

$$d\Omega_k \underset{P \to P_0}{\sim} \frac{d\zeta}{\zeta^{k+1}} + \dots, \qquad \oint_A d\Omega_k = 0, \qquad k \ge 1$$

and third-kind Abelian differentials $d\Omega_{\pm}$

$$d\Omega_0 = d\log\frac{E(P,P_+)}{E(P,P_-)} \underset{P\to P_{\pm}}{\sim} \pm \frac{d\zeta_{\pm}}{\zeta_{\pm}} + \dots, \qquad \oint_{\mathsf{A}} d\Omega_0 = 0,$$

• E.g. for the first and third kind Abelian differentials

$$\begin{split} 0 &= \int_{\Sigma} d\omega_{\beta} \wedge d\Omega_{0} = \sum_{\alpha} \left(\oint_{A_{\alpha}} d\omega_{\beta} \oint_{B_{\alpha}} d\Omega_{0} - \oint_{A_{\alpha}} d\Omega_{0} \oint_{B_{\alpha}} d\omega_{\beta} \right) + \\ &+ 2\pi i \sum_{P_{+}} \operatorname{res}_{P_{\pm}} \omega_{\beta} d\Omega_{0} = \oint_{B_{\beta}} d\Omega_{0} - 2\pi i \int_{P_{+}}^{P_{-}} d\omega_{\beta} \end{split}$$

A.Marshakov Krichever tau function July 2, 2024 5/3

Definition: Krichever data

- Complex curve Σ_g with *pair* of meromorphic differentials (dx and dy), with the *fixed* periods.
- ullet Subfamily of curves $\{\Sigma_g\}$ of dimension

$$(3g-3)-(2g-3)=g$$

• Krichever data: an integrable system (back to the Liouville theorem) – on g-dimensional family of Σ_g one can choose g independent functions (Hamiltonians), while the co-ordinates on Jacobian of Σ_g play the role of complexified angle variables.

July 2, 2024

Definition: prepotential

• Krichever data: g-parametric family of Riemann surfaces Σ , endowed with a generating differential and connection ∇_{mod} on moduli space

$$dS \propto ydx$$
, $\nabla_{\text{mod}} dS = \text{holomorphic}$

where $y(P) = \int_{-P}^{P} dy$, $P \in \Sigma$.

• Prepotential (a particular case of Krichever tau-function)

$$a = \frac{1}{2\pi i} \oint_A dS, \quad a_D = \oint_B dS := \frac{\partial \mathcal{F}}{\partial a}$$

where A and B are dual cycles in $H_1(\Sigma)$.

- Defined locally on the moduli (Teichmüller?) space of Σ .
- Integrability from RBI

$$\frac{\partial \mathsf{a}_{\alpha}^{\mathsf{D}}}{\partial \mathsf{a}_{\beta}} = \mathsf{T}_{\alpha\beta} = \mathsf{T}_{\beta\alpha} = \frac{\partial \mathsf{a}_{\beta}^{\mathsf{D}}}{\partial \mathsf{a}_{\alpha}}$$

Prepotential: proof

• ∇_{mod} : connection via covariantly constant coordinate on Σ , e.g. x=0 (problems at dx=0). Then

$$\nabla_{\mathrm{mod}} dS = (\nabla_{\mathrm{mod}} y) dx$$

and $\nabla_{\mathrm{mod}} y$ is defined from equation of $\Sigma \subset \mathbb{C}^2$.

Using this and

$$\delta_{\alpha\beta} = \frac{\partial a_{\alpha}}{\partial a_{\beta}} = \frac{1}{2\pi i} \oint_{A_{\alpha}} \frac{\partial dS}{\partial a_{\beta}}$$

one finds that $\frac{\partial dS}{\partial a_{eta}}=d\omega_{eta}$ is normalized holomorphic differential.

Then

$$\frac{\partial a_{\alpha}^{D}}{\partial a_{\beta}} = \oint_{B_{\alpha}} \frac{\partial dS}{\partial a_{\beta}} = \oint_{B_{\alpha}} d\omega_{\beta} = T_{\alpha\beta}$$

Consequence: for the second derivatives

$$\frac{\partial^2 \mathcal{F}}{\partial \mathsf{a}_\alpha \partial \mathsf{a}_\beta} = \mathsf{T}_{\alpha\beta}$$

Prepotential: SW example

• (Σ, dx, dy) given by

$$w + \frac{\Lambda^{2N}}{w} = P_N(z) = z^N + \sum_{k=0}^{N-2} u_k z^k, \qquad dx = \frac{dw}{w}, \quad dy = dz$$

since obviously

$$\oint_{(A,B)} dz = 0, \quad \oint_{(A,B)} \frac{dw}{w} \in 2\pi i \mathbb{Z}$$

• From $\nabla_{\mathrm{mod}} w = 0$ and $\nabla_{\mathrm{mod}} z \; P_N'(z) = \sum_{k=0}^{N-2} \delta u_k z^k$

$$\nabla_{\mathrm{mod}} dS = \nabla_{\mathrm{mod}} z \, \frac{dw}{w} = \sum_{k=0}^{N-2} \delta u_k \frac{z^k}{P'_N(z)} \frac{dw}{w}$$

holomorphic on Σ .

A.Marshakov

Definition: Krichever tau-function

ullet To complete definition by the time-variables associated with the second-kind Abelian differentials with singularities at a point P_0

$$t_{k} = \frac{1}{k} \operatorname{res}_{P_{0}} \xi^{-k} dS, \quad k > 0$$
$$\frac{\partial \mathcal{F}}{\partial t_{k}} := \operatorname{res}_{P_{0}} \xi^{k} dS, \quad k > 0$$

where ξ is an *inverse* local co-ordinate at P_0 : $\xi(P_0) = \infty$.

• The consistency condition for (10) is ensured by

$$\frac{\partial^2 \mathcal{F}}{\partial t_n \partial t_k} = \operatorname{res}_{P_0}(\xi^k d\Omega_n)$$

symmetric due to $(\Omega_n)_+ = \xi^n$, for the main, singular at P_0 , part.

Also

$$\frac{\partial^2 \mathcal{F}}{\partial t_n \partial a_\alpha} = \oint_{B_\alpha} d\Omega_n = \operatorname{res}_{P_0} \xi^n d\omega_\alpha$$

which again follows from RBI;

Remarks:

- Definition from RBI;
- Can be defined for any set of Abelian differentials $\{dH_I\} = \{d\omega_{\alpha}, d\Omega_n, d\Omega_0, \ldots\}$ and corresponding flat-coordinates $\{T_I\} = \{a_{\alpha}, t_n, t_0, \ldots\}$.
- pq-duality: $dx \leftrightarrow dy$ generally a nontrivial tiny point:
 - Prepotentials: $\nabla^{\mathsf{x}}_{\mathrm{mod}} \leftrightarrow \nabla^{\mathsf{y}}_{\mathrm{mod}}$;
 - dKP: a non-trivial relation (e.g. a Fourier-transform for a matrix integral);
 - A nontrivial relation for residue formulas ...
- Starting point for the "topological recursion" ...

Residue formula: statement

Theorem

$$\frac{\partial^3 \mathcal{F}}{\partial T_I \partial T_J \partial T_K} = \, \operatorname{res}_{\, dx = 0} \left(\frac{d H_I d H_J d H_K}{d x d y} \right)$$

- Idea of proof: to take one mode derivative of a second-derivative formula ...
- Prepotential case:

$$\frac{\partial T_{\alpha\beta}}{\partial a_{\gamma}} \equiv \partial_{\gamma} T_{\alpha\beta} = \int_{B_{\beta}} \partial_{\gamma} d\omega_{\alpha} = -\int_{\partial \Sigma} \omega_{\beta} \partial_{\gamma} d\omega_{\alpha}$$

Further

$$\partial_{\gamma} T_{\alpha\beta} = -\int_{\partial \Sigma} \omega_{\beta} \partial_{\gamma} d\omega_{\alpha} = \int_{\partial \Sigma} \partial_{\gamma} \omega_{\beta} d\omega_{\alpha} = \sum \operatorname{res}_{dx=0} \left(\partial_{\gamma} \omega_{\beta} d\omega_{\alpha} \right)$$

since the expression acquires poles at dx = 0.

A.Marshakov

Residue formula: proof

• Use expansions where dx = 0

$$\omega_{\beta}(x) \underset{x \to x_{\alpha}}{=} \omega_{\beta a} + c_{\beta a} \sqrt{x - x_{a}} + \dots, \qquad d\omega_{\beta} \underset{x \to x_{a}}{=} \frac{c_{\beta a}}{2\sqrt{x - x_{a}}} dx + \dots$$

$$\nabla_{\text{mod}} : \partial_{\gamma} \omega_{\beta} \equiv \partial_{\gamma} \omega_{\beta}|_{x = \text{const}} \underset{x \to x_{a}}{=} -\frac{c_{\beta a}}{2\sqrt{x - x_{a}}} \partial_{\gamma} x_{a} + \text{regular}$$

Then

$$\operatorname{res} \left(\partial_{\gamma} \omega_{\beta} d\omega_{\alpha} \right) = \sum_{a} \operatorname{res} \left(\frac{c_{\beta a} \partial_{\gamma} x_{a}}{2 \sqrt{x - x_{a}}} d\omega_{\alpha} \right) = \sum_{a} \operatorname{res} \left(\frac{d\omega_{\beta}}{dx} d\omega_{\alpha} \partial_{\gamma} x_{a} \right) =$$

$$= \sum_{a} \operatorname{res} \left(\frac{d\omega_{\alpha} d\omega_{\beta} d\omega_{\gamma}}{dx dy} \right)$$

where last equality similarly follows from

$$y(x) = \int_{x \to x_a} y_a \sqrt{x - x_a} + \dots, \quad dy = \int_{x \to x_a} \frac{y_a}{2\sqrt{x - x_a}} dx + \text{regular}$$

$$d\omega_{\gamma} = \partial_{\gamma} dS = \int_{x \to x_a} -\frac{y_a \partial_{\gamma} x_a}{2\sqrt{x - x_a}} dx + \text{regular}$$

A.Marshakov Krichever tau function July 2, 2024 13/36

Landau-Ginzburg topological theories

The topological theories defined by polynomial superpotential (generally of several complex variables)

$$W(\lambda) = \lambda^N + \sum_{k=0}^{N-2} u_k \lambda^k$$

The primaries are given by (dKP equation)

$$\phi_k(\lambda) := \frac{\partial W}{\partial t_k} = \left(\frac{d}{d\lambda} W^{k/N}\right)_+$$

where flat times

$$t_k = \frac{1}{k} \operatorname{res}_{P_0} \xi^{-k} dS = -\frac{N}{k(N-k)} \operatorname{res}_{\infty} \left(W^{1-k/N} d\lambda \right)$$

for $(\Sigma, dx, dy) = (\Sigma_0, dW, d\lambda)$ with $\xi = W(\lambda)^{1/N}$.

A.Marshakov

Landau-Ginzburg topological theories

The derivatives of the Krichever tau-function are given by

$$\frac{\partial \mathcal{F}}{\partial t_k} = \operatorname{res}_{P_0} \xi^k dS = \frac{N}{N+k} \operatorname{res}_{\infty} \left(W^{1+\frac{k}{N}} d\lambda \right)$$

together with

$$\mathcal{F}_{ik} = \frac{\partial^2 \mathcal{F}}{\partial t_i \partial t_k} = \operatorname{res}_{\infty} \left(W^{k/N} \frac{\partial W}{\partial t_i} \right) = \operatorname{res}_{\infty} \left(W^{k/N} \partial_{\lambda} W_{+}^{i/N} \right)$$

and (the Grothendick residue)

$$\mathcal{F}_{ijk} = -\operatorname{res}_{\infty} \frac{\partial_{\lambda} W_{+}^{i/N} \partial_{\lambda} W_{+}^{j/N} \partial_{\lambda} W_{+}^{k/N}}{W'} = \operatorname{res}_{W'=0} \frac{\phi_{i}(\lambda) \phi_{j}(\lambda) \phi_{k}(\lambda)}{W'}$$

WDVV equations: definition

LG primaries satisfy the associative algebra (a polynomial ring modulo $W'(\lambda)$)

$$\phi_i(\lambda)\phi_j(\lambda) = \sum_{k=1}^{N-1} C_{ij}^k \phi_k(\lambda) + R_{ij}(\lambda)W'(\lambda)$$

and therefore

$$[\mathsf{C}_i,\mathsf{C}_j]=0$$

for the matrices $\|C_i\|_j^k := C_{ij}^k$. In terms of matrices

$$\|\mathsf{F}_i\|_{jk} := \mathcal{F}_{ijk} = \frac{\partial^3 \mathcal{F}}{\partial t_i \, \partial t_j \, \partial t_k}$$

it leads to the overdetmined system of the differential equations

$$\mathsf{F}_i\mathsf{F}_j^{-1}\mathsf{F}_k=\mathsf{F}_k\mathsf{F}_j^{-1}\mathsf{F}_i \quad \text{ for all } i,j,k.$$

for the Krichever tau-function.

A.Marshakov Krichever tau function July 2, 2024

WDVV equations: theorem

Theorem

Let $\mathcal{F}=\mathcal{F}(T)$ be the Krichever tau-function, i.e. residue formula $\frac{\partial^3 \mathcal{F}}{\partial T_I \partial T_J \partial T_K} = \operatorname{res}_{dx=0} \left(\frac{dH_I dH_J dH_K}{dx dy} \right)$ holds. Then it satisfies the WDVV equations once the matching relation

$$\#\{T\} = \#(dx = 0)$$

is fulfilled.

Remarks:

- The number of critical points #(dx = 0) is counted modulo possible involution.
- Upon non-degeneracy conditions the proof is obvious.
- Constant "metric" $\eta = F_1$ is not necessary.

WDVV equations: proof

Idea of proof: finite dimensional ring at dx = 0

$$\phi_i(\lambda_\alpha)\phi_j(\lambda_\alpha) = \sum_k C_{ij}^k \phi_k(\lambda_\alpha), \quad \forall \ \lambda_\alpha$$

is solved for

$$C_{ij}^{k} = \sum_{\alpha} \phi_{i}(\lambda_{\alpha})\phi_{j}(\lambda_{\alpha}) \left(\phi_{k}(\lambda_{\alpha})\right)^{-1}$$

upon $\#\{i\} = \#\{\alpha\}$ and $\det_{i\alpha} \|\phi_i(\lambda_\alpha)\| \neq 0$. Modification $(\xi(\lambda_\alpha) \neq 0)$

$$\phi_i(\lambda_\alpha)\phi_j(\lambda_\alpha) = \sum_k C_{ij}^k(\xi)\phi_k(\lambda_\alpha) \cdot \xi(\lambda_\alpha), \qquad \forall \ \lambda_\alpha$$

only leads to redefinition

$$\eta_{\mathit{kn}} = \mathcal{F}_{\mathit{kn}1} \longrightarrow \eta_{\mathit{kn}}(\xi) = \sum_{\mathit{a}} \xi_{\mathit{a}} \mathcal{F}_{\mathit{kna}}$$

with $\xi_a = \sum_{\alpha} \xi(\lambda_{\alpha}) (\phi_a(\lambda_{\alpha}))^{-1}$.

2d minimal gravity

• For each (p, q)-th point take a pair of polynomials

$$X = \lambda^p + \dots, \qquad Y = \lambda^q + \dots$$

of degrees p and q respectively. Landau-Ginzburg (p, q) = (N, 1).

 A dispersionless version of the Lax and Orlov-Shulman operators from KP theory

$$\left[\hat{X},\hat{Y}\right]=\hbar,\qquad \hat{X}=\partial^p+\ldots,\qquad \hat{Y}=\partial^q+\ldots$$

An invariant way: an algebraic equation

$$Y^p - X^q - \sum f_{ij}X^iY^j = 0$$

with some $\{f_{ij}\}$. Generally, this is a smooth curve of genus

$$g = \frac{(p-1)(q-1)}{2} = \#$$
 primaries

2d (minimal) gravity

Figure: Degenerate curves of Yang-Lee and Ising models of g=2 and g=3.

Solution to dKP

On rational curve

$$S = \sum_{k=1}^{p+q} t_k H_k = \sum_{k=1}^{p+q} t_k X^{k/p} (\lambda)_+, \quad k \mod p,$$
$$dS \underset{\xi \to \infty}{=} \sum \left(k t_k \xi^{k-1} d\xi + \frac{\partial \mathcal{F}}{\partial t_k} \frac{d\xi}{\xi^{k+1}} \right)$$

- Dependence of $X(\lambda) = \lambda^p + \sum_{k=0}^{p-2} X_k \lambda^k$ over $\{t\}$ from $dS|_{dX=0} = 0$, a system "hodograph" equations $\frac{dS}{d\lambda} = 0$ at p-1 roots of $X'(\lambda) = 0$.
- Any hamiltonian

$$H_k(\lambda) = \frac{\partial S}{\partial t_k} = \xi^k(\lambda)_+$$

is a polynomial of variable $\lambda=H_1$: dispersionless Hirota equations: all second derivatives $\{\frac{\partial^2 \mathcal{F}}{\partial t_k \partial t_n}\}$ are expressed in terms of $\{\frac{\partial^2 \mathcal{F}}{\partial t_k \partial t_1}\}$. E.g.

$$\frac{\partial^2 \mathcal{F}}{\partial t_3 \partial t_3} = 3 \left(\frac{\partial^2 \mathcal{F}}{\partial t_1^2} \right)^3$$

Ising (p, q) = (3, 4)

$$X = \lambda^3 + X_1 \lambda + X_0$$
$$Y = \lambda^4 + Y_2 \lambda^2 + Y_1 \lambda + Y_0$$

Flat times $\{t_1, t_2, 0, 0, t_5, 0, t_7 = \text{const}\}$:

$$t_1 = -\frac{2}{3}X_0^2 + \frac{4}{27}X_1^3 + \frac{5}{9}t_5X_1^2$$
$$t_2 = -\frac{2}{3}X_0X_1 - \frac{5}{3}t_5X_0$$

Solving for X_0

$$t_1 = -\frac{6t_2^2}{(2X_1 + 5t_5)^2} + \frac{4}{27}X_1^3 + \frac{5}{9}t_5X_1^2 = \frac{4}{27}X_1^3 + \frac{5}{9}t_5X_1^2$$

the Boulatov-Kazakov equation.

- (ロ) (団) (注) (注) (注) (注) (2) (2)

A.Marshakov Krichever tau function July 2,

$$(p,q) = (2,2K+1))$$
 series

• p = 2 KdV reduction

$$X = \lambda^2 + 2u, \quad \xi = \sqrt{X} = \sqrt{\lambda^2 + 2u}$$

$$S = \sum_{k=0}^{K+1} t_{2k+1} X^{k+1/2} (\lambda)_+$$

• Dependence u = u(t) from $dS|_{dX=0} = 0$ gives

$$P(u) \equiv \frac{1}{2} \left. \frac{dS}{d\lambda} \right|_{\lambda=0} = \sum_{k=0}^{K+1} \frac{(2k+1)!!}{k!} t_{2k+1} u^k = 0$$

• Explicit formula $\mathcal{F}=\frac{1}{2}\sum_{k,l}t_kt_l \ \operatorname{res}_{P_0}(\xi^kdH_l)$ for the tau-function

$$\mathcal{F} = \frac{1}{2} \sum_{k,l=0}^{K+1} t_{2k+1} t_{2l+1} \frac{(2k+1)!!(2l+1)!!}{k!l!(k+l+1)} u^{k+l+1} = \frac{1}{2} \int_0^u P^2(v) dv$$

A.Marshakov Krichever tau function July 2, 2024 23/36

$$(p,q) = (2,2K+1)$$
 series

In order to compare with the world-sheet gravity: resonances and analytic terms \dots

- Resonances: absent for (2K + 1)-reduction;
- Residue formula (contributions from infinity?);
- p-q or X-Y duality;
- Verlinde formula (with A.Artemev and P.Gavrylenko).

Only $\mu \neq$ 0: Chebyshev background ...

A.Marshakov

Chebyshev curves

ullet At only cosmological constant $\mu
eq 0$

$$T_p(Y) = T_q(X)$$

parameterized by $z \in \mathbb{P}^1$

$$X = T_p(z), \qquad Y = T_q(z)$$

Degenerate at

$$U_{p-1}(Y) = 0,$$
 $U_{q-1}(X) = 0$

• For (p,q) = (2,2K+1) a degenerate hyperelliptic curve with nodal singularities at

$$U_1(Y) = Y = 0, \quad U_{2K}(X) = 0$$

2K pairwise glued points

$$z_n^{\pm} = \pm \cos \frac{\pi(2n-1)}{2(2K+1)}, \quad n = 1, 2, \dots, K$$
 $X_n = T_2(z_n^{\pm}) = \cos \frac{\pi(2n-1)}{2K+1}, \quad Y_n = T_{2K+1}(z_n^{\pm}) = \pm \cos \pi \left(n - \frac{1}{2}\right) = 0$

A.Marshakov Krichever tau function July 2, 2024

25 / 36

Chebyshev curves

Figure: Chebyshev curve for (2, 2K+1)-series, with (degenerate) cuts $\{z_n^{\pm}\}$ marked in red, critical points $\{\zeta_m^{\pm}\}$ where dY=0 – in green, and the point z=0 where dX=0.

Ground ring and tachyons

• Ground ring of minimal (2, 2K + 1) gravity - isomorphic to

$$U_k(x)U_l(x) = U_{k+l}(x) + U_{k+l-2}(x) + \ldots + U_{|k-l|}(x), \quad k, l = 0, 1, \ldots$$

modulo $U_{2K}(x) = 0$.

- KP hamiltonians $H_{2n+1}(z) = T_{2n+1}(z) \sim Y(z)_+^{(2n+1)/(2K+1)}$.
- Non-faithful "tachyonic" module:

$$T_n = \frac{dH_{2K+1-2n}}{dz} = U_{2(K-n)}(z), \quad n = 1, ..., K$$

ground ring acts as

$$T_n(z) = U_{n-1}(X)T_1(z) = U_{n-1}(T_2(z)), \qquad n = 1, \dots, 2K$$

• The tachyonic operators $\mathcal{T}_n \sim \mathcal{T}_{2K-n}$ are identified up to a sign, due to "reflection relations"

$$U_{2K+I}(x) + U_{2K-I}(x) = 0$$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○

Proof

Indeed, $\mathcal{T}_1 \sim U_{2K-2}(z)$

$$\mathcal{T}_n \sim U_{n-1}(T_2(z))U_{2K-2}(z) = \frac{1}{z}U_{2n-1}(z)U_{2K-2}(z) \underset{\text{ring } U}{=} = \frac{1}{z}\left(U_{2K+2n-3}(z) + U_{2K+2n-1}(z) + \dots + U_{2K-2n+1}(z) + U_{2K-2n-1}(z)\right) \underset{\text{reflection}}{=} = \frac{1}{z}\left(U_{2K-2n+1}(z) + U_{2K-2n-1}(z)\right) \underset{\text{ring } U}{=} U_{2(K-n)}(z)$$

Identification $\mathcal{T}_n \sim \mathcal{T}_{2K-n}$ due to

$$U_{2K-n}(X) = U_{2K-n}(T_2(z)) = \frac{1}{z}U_{4K-2n-1}(z) \stackrel{=}{\underset{\text{reflection}}{=}} -\frac{1}{z}U_{2n-1}(z) =$$

= $-U_{n-1}(T_2(z)) = -U_{n-1}(X)$

A.Marshakov Krichever tau function July 2, 2024

Residue formula

Residue formula for on a Chebyshev curve

$$\frac{\partial^{3} \mathcal{F}}{\partial t_{\tilde{i}} \partial t_{\tilde{j}} \partial t_{\tilde{k}}} = -\operatorname{res}_{dY=0} \frac{dH_{\tilde{i}} dH_{\tilde{j}} dH_{\tilde{k}}}{dX dY} = -\frac{1}{2K+1} \operatorname{res}_{U_{2K}(z)=0} \frac{U_{2\tilde{i}} U_{2\tilde{j}} U_{2\tilde{k}}(z) dz}{2z U_{2K}(z)} = \\
= -\frac{1}{2K+1} \sum_{m=1}^{K} \frac{U_{2\tilde{i}} U_{2\tilde{j}} U_{2\tilde{k}}(\zeta_{m})}{\zeta_{m} U_{2K}'(\zeta_{m})}$$

for $\tilde{n} = 2(K - n) + 1$ etc, and

$$U_{2K}(z) = 0, \quad z = \zeta_m^{\pm} = \pm \cos \frac{\pi m}{2K+1}, \quad m = 1, 2, \dots, K$$
 $X_m = T_2(\zeta_m^{\pm}) = \cos \frac{2\pi m}{2K+1}, \quad Y_m^{\pm} = \pm T_{2K+1}(\zeta_m^{\pm}) = \pm \cos \pi m = \mp (-1)^m$

A.Marshakov

Residue formula

Due to
$$T_{n+1}(x)=xU_n(x)-U_{n-1}(x)$$
 and
$$\zeta_m^\pm U_{2K-1}(\zeta_m^\pm)=(-1)^m\cos\frac{\pi m}{2K+1}, \qquad m=1,2,\ldots,K$$

at $U_{2K}(z) = 0$ further

$$\begin{split} \frac{\partial^{3}\mathcal{F}}{\partial t_{\tilde{i}}\partial t_{\tilde{j}}\partial t_{\tilde{k}}} &= -\frac{1}{2K+1}\sum_{m=1}^{K}\frac{U_{2\tilde{i}}U_{2\tilde{j}}U_{2\tilde{k}}(\zeta_{m})}{\zeta_{m}U_{2K}'(\zeta_{m})} = \\ &= -\frac{1}{(2K+1)^{2}}\sum_{m=1}^{K}\frac{U_{2\tilde{i}}U_{2\tilde{j}}U_{2\tilde{k}}(\zeta_{m})(1-\zeta_{m}^{2})}{\zeta_{m}U_{2K-1}(\zeta_{m})} = \\ &= \frac{2}{(2K+1)^{2}}\sum_{m=1}^{K}\frac{\sin\frac{2\pi mi}{2K+1}\sin\frac{2\pi mj}{2K+1}\sin\frac{2\pi mk}{2K+1}}{\sin\frac{2\pi m}{2K+1}} = \frac{1}{2(2K+1)}(-1)^{1+i+j+k}N_{ijk} \end{split}$$

with the Verlinde expression at the r.h.s.

A.Marshakov Krichever tau function July 2, 2

Verlinde formula: basics

- S-matrix: $\chi_a(-1/\tau) = \sum_b S_a^b \chi_b(\tau)$, unitarity $S^\dagger S = 1$
- Verlinde formula: relation with fusion algebra:

$$\mathcal{N}_{ab}^c = \sum_m rac{\mathcal{S}_a^m \mathcal{S}_b^m (\mathcal{S}^\dagger)_m^c}{\mathcal{S}_1^m}$$

• Minimal (p, q)-model $S^2 = 1$:

$$S_{rs,\rho\sigma} = 2\sqrt{\frac{2}{pq}}(-1)^{1+s\rho+r\sigma}\sin\pi\frac{p}{q}r\rho\sin\pi\frac{q}{p}s\sigma$$

• (p,q) = (2K + 1, 2) series $s = \sigma = 1$:

$$\mathcal{S}_{r,\rho} = \frac{2}{\sqrt{2K+1}} (-1)^{1+\rho+r+K} \sin \frac{2\pi r \rho}{2K+1}$$

Verlinde formula

Verlinde formula for (p, q) = (2K + 1, 2)

$$\frac{4}{2K+1}(-1)^{1+i+j+k}\sum_{m=1}^K\frac{\sin\frac{2\pi mi}{2K+1}\sin\frac{2\pi mj}{2K+1}\sin\frac{2\pi mk}{2K+1}}{\sin\frac{2\pi m}{2K+1}}=N_{ijk}$$

with $\{N_{ijk}\} \in \{0,1\}$. (One more?) nontrivial proof:

$$\begin{aligned} N_{ijk} &= (-1)^{1+i+j+k} \frac{4}{2K+1} \sum_{m=1}^{K} \frac{\sin \frac{2\pi mi}{2K+1} \sin \frac{2\pi mj}{2K+1} \sin \frac{2\pi mk}{2K+1}}{\sin \frac{2\pi m}{2K+1}} = \\ &= (-1)^{i+j+k} \operatorname{res}_{U_{2K}(z)=0} \frac{U_{2\tilde{i}}U_{2\tilde{j}}U_{2\tilde{k}}(z)dz}{zU_{2K}(z)} = \\ &= (-1)^{1+i+j+k} \left(\operatorname{res}_{z=0} + \operatorname{res}_{z=\infty} \right) \frac{U_{2\tilde{i}}U_{2\tilde{j}}U_{2\tilde{k}}(z)dz}{zU_{2K}(z)} \end{aligned}$$

by moving the contour to dX = 0 or z = 0 and $z = \infty$.

A.Marshakov

Verlinde formula

Substituting $z = \frac{1}{2} \left(w + \frac{1}{w} \right)$

$$(-1)^{1+i+j+k} N_{ijk} = (\operatorname{res}_{z=0} + \operatorname{res}_{z=\infty}) \frac{U_{2\tilde{i}} U_{2\tilde{j}} U_{2\tilde{k}}(z) dz}{z U_{2K}(z)} =$$

$$= (\operatorname{res}_{w=i} + \operatorname{res}_{w=0}) \frac{\left(w^{2\tilde{i}+1} - w^{-2\tilde{i}-1}\right) (i \to j) (j \to k)}{\left(w^2 - w^{-2}\right) \left(w^{2K+1} - w^{-2K-1}\right)} \frac{dw}{w} =$$

$$= (-1)^{1+i+j+k} + \operatorname{res}_{w=0} \frac{\left(w^{2\tilde{i}+1} - w^{-2\tilde{i}-1}\right) (i \to j) (j \to k)}{\left(w^2 - w^{-2}\right) \left(w^{2K+1} - w^{-2K-1}\right)} \frac{dw}{w}$$

The last residue gives

$$\begin{split} N_{ijk} &= 1 - \sum_{l=0}^{K-2} \delta_{i+j+k+2l,2K} - \sum_{l=0}^{\left[\frac{K-3}{2}\right]} \left(\delta_{i+j+2l+1,k} + \delta_{i+k+2l+1,j} + \delta_{k+j+2l+1,i}\right) = \\ &= \sum_{l=0}^{\min(i,j)-1} \delta_{|i-j|+2l+1,k} + \sum_{l=0}^{\left[\frac{K-2}{2}\right]} \delta_{i+j+k,2(K+l+1)} \end{split}$$

4 D > 4 D > 4 E > 4 E > E 990

Non-algebraic generalization

"Continuous" theory (Collier, Eberhardt, Mühlmann and Rodriguez)

$$\mathcal{N}(p_1, p_2, p_3) = 2b \sum_{m=1}^{\infty} (-1)^m \frac{\sin 2\pi mbp_1 \sin 2\pi mbp_2 \sin 2\pi mbp_3}{\sin \pi mb^2}$$

 $(b^2 = \frac{p}{q}$ in minimal theory). Here

$$(-1)^m \sin \pi mb^2 = \sin(\pi mb^2 + \pi m) = \sin 2\pi mbp_0 = S_0^m$$

where $p_0 = (1/b + b)/2$ corresponds to $h_0 = 0$ or "unity" operator. Zamolodchikov's (?) formula comes from residue formula for a non-algebraic curve

$$x(z) = \cos \pi b^{-1} z$$
, $y(z) = \cos \pi b z$

with

$$\left(\frac{p}{q}=\right)b^2\in\mathbb{R}$$

A.Marshakov

Non-algebraic residue formula

Indeed

A.Marshakov

$$\mathcal{N}(p_1, p_2, p_3) = \sum_{dx=0} \frac{dH_{p_1}dH_{p_2}dH_{p_3}}{dx \ dy} = \sum_{x'(z)=0} \frac{\phi(p_1z)\phi(p_2z)\phi(p_3z)}{x''(z)y'(z)}$$

since $x'(z) \sim \sin \pi b^{-1} z = 0$ at $z_m = bm$, $m \in \mathbb{Z}$, where

$$y'(z_m) \sim b \sin \pi b z_m = b \sin \pi b^2 m, \qquad x''(z_m) \sim b^{-2} \cos \pi b^{-1} z_m = b^{-2} (-1)^m$$

and the rest comes from identification $\phi(pz) = \sin 2\pi pz$

Figure: Non-algebraic curve gives rise to an infinite sum over dx = 0.

Many other developments

- Instanton partition functions;
- 2d conformal field theories;
- "Relativistic" (qt)-deformations;
- "Topological vertices", cluster algebras, double-loop algebras;
- Isomonodromic deformations;
- ..