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1 Lecture 5

1.1 Quantum Hitchin systems

What is a quantum integrable system, and what does it mean to quantize a classical integrable
system? This is not even the most basic question, since classical integrable systems live on
symplectic manifolds, and so we should say that it means to quantize a symplectic manifold.
This story can be told for smooth manifolds, analytic manifolds, algebraic varieties, etc. over
any field.

Let M be a symplectic manifold. Then O(M) is a Poisson algebra (or sheaf thereof),
meaning that there is a Poisson bracket {−,−} on elements (or sections) of O(M). We will
pretend M is affine so that there is no need to think about sheaves. In classical mechanics,
M will be the phase space, and O(M) is the algebra of observables. Quantization means that
observables are replaced by operators which may no longer commute.

Definition. A quantization of O(M) is a non-commutative algebra A, over k[[~]] or k[~],
which is a flat deformation of A/~A and such that A/~A ∼= O(M) and the multiplication ∗
in A satisfies

lim
~→0

f ∗ g − g ∗ f
~

= {f, g}.

Example. Suppose M = T ∗Y for some Y . Recall that O(T ∗Y ) is locally generated by
coordinates xi and momenta pi. Then a natural quantization is the algebra D(Y ) of differential
operators on Y — more precisely, the sub-algebra D~(Y ) generated locally by xi and p̂i := ~∂i,
which satisfy the Heisenberg uncertainty relations

[p̂i, xj ] = ~δij

and [pi, pj ] = [xi, xj ] = 0.

Let k = C and n := dimY . Recall that a classical integrable system consists of functionally
(or, in the algebraic case, algebraically) independent functions H1, . . . ,Hn on T ∗Y such that
{Hi, Hj} = 0. These functions define a map

p : T ∗Y → An
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whose pullback p∗ : O(An) = C[X1, . . . , Xn] → O(T ∗Y ) sends Xi 7→ Hi and is therefore
injective onto a Poisson-commutative subalgebra C[H1, . . . ,Hn] ⊂ T ∗Y .

Theorem. Any function which Poisson-commutes with all Hi is functionally (algebraically)
dependent on them.

Thus if Y is a smooth algebraic variety, then classical integrable systems on T ∗Y corre-
spond to Poisson-commutative subalgebras in O(T ∗Y ) of transcendence degree dimY . This
motivates the following definition.

Definition. A quantization of such a classical integrable system is a non-commutative algebra
A quantizing O(T ∗Y ), with an injection

C[X1, . . . , Xn] ↪→ A, Xi 7→ Hi.

Theorem (Makar–Limanov). If [H,Hi] = 0 and H ∈ D(Y ), then H is algebraically dependent
on H1, . . . ,Hn.

To construct a quantum integrable system, we therefore require a maximal (up to algebraic
extensions) commutative subalgebra in D(Y ). This quantizes a classical integrable system if
it converges to it when ~→ 0 and p̂i 7→ pi.

This gives rise to a naive quantization procedure: just replace all instances of pi with
~∂i. This is not a good thing to do in general due to ordering issues: unlike pi, the partial
derivatives ∂i do not commute with coordinates, so there is ambiguity as to whether, say,
xipi should be replaced by ~xi∂i or ~∂ixi = ~xi∂i + ~. But this naive procedure does work
sometimes, e.g. in the Garnier system from last lecture.

Example. Recall the deformed Garnier system, given by the Hamiltonians

Gi =
∑
j 6=i

−(xi − xj)2pipj + 2(xi − xj)(λipj − λjpi) + 2λiλj
ti − tj

where xi and pj are the standard coordinates and momenta. The naive quantization procedure
produces

1
~2 Ĝi :=

∑
j 6=i

−(xi − xj)2∂i∂j + (xi − xj)(λi
~ ∂j −

λj

~ ∂i) + 2λi
~
λj

~
ti − tj

.

It is convenient to introduce Λi := 2λi/~, so that this can be rewritten as

∑
j 6=i

−(xi − xj)2∂i∂j + 2(xi − x− j)(Λi∂j − Λj∂i) + 1
2ΛiΛj

ti − tj
.

In representation theory, there is a slightly different way to write this. Let sl2 = 〈e, f, h〉, and
recall that there is an action of U(sl2) by differential operators on A1 given by

f 7→ −∂x, h 7→ 2x∂x + Λ, e 7→ x2∂x + Λx.
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The Casimir tensor is the unique element Ω ∈ (sl2⊗ sl2)SL2 up to scaling, and is given by the
formula

Ω = e⊗ f + f ⊗ e+ 1
2h⊗ h.

Then the numerator of formula for Ĝi is just Ωi,j :

Ĝi =
∑
j 6=i

Ωi,j

ti − tj
.

It is obvious that [Ω12,Ω13 + Ω23] = 0, in fact, true for any simple g if Ω ∈ (S2g)g, and
therefore [Ĝi, Ĝj ] = 0. The result is a collection of elements in U(g)⊗n called the Gaudin
Hamiltonians for g.

If we pick representations V1, . . . , Vn of g, then we genuinely get commuting operators

Ĝi ∈ End(V1 ⊗ · · · ⊗ Vn)

which also commute with g and therefore act on (V1⊗· · ·⊗Vn)g. In this way we have produced
interesting families of commuting operators.

For g of higher rank, this procedure does not directly produce an integrable system,
because we are missing higher-order operators; considering only the Casimir is like considering
only tr∧2φ in the classical Hitchin system for SLn. However, the following example shows
that the naive procedure does not always work.

Example (Elliptic Calogero–Moser system). Recall that the classical elliptic Calogero–Moser
system has Hamiltonian H2 =

∑
i p

2
i −

∑
j 6=i ℘(qi − qj). So the quantized Hamiltonian is

1
~2 Ĥ2 :=

∑
i

∂2
i −

1
~2

∑
j 6=i

℘(qi − qj).

The theorem is that Ĥ2 indeed defines a quantum integrable system C[Ĥ1, . . . , Ĥn], which is
just the centralizer of Ĥ2 in the algebra of differential operators in n variables. Trigonometric
or rational Calogero–Moser systems can be obtained as limits from this example.

But the integrability of this system does not immediately follow from the integrability of
the classical system. For instance,

H3 =
∑
i

p3
i +

∑
i

pifi(q) + g(q)

for some functions fi(q) and g(q). Already in the middle term we have the ambiguity in
ordering: in the quantized Hamiltonian Ĥ3, do we put ∂ifi(q) or fi(q)∂i, or something else?
Clearly, we need a more systematic approach!

In fact there is no uniform way to quantize an arbitrary integrable system. One needs to
go back to the definition of the classical system and see if one can change the way in which it
is obtained. This is what we will do.
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1.2 Quantum Hitchin systems

Recall our construction of the Hitchin system on Bun◦G(X). There were two steps.

1. Represent BunG(X) as a double quotient, e.g. G(X \ x)\G(K)/G(O).

2. Construct some commuting Hamiltonians on T ∗G(K) which are invariant under the
left and right actions of G(K), and then descend them to BunG(X) using Hamiltonian
reduction by G(X \ x)×G(O).

To retrace our steps, we must discuss a quantized version of Hamiltonian reduction (along a
choice of coadjoint orbit).

Classically, a group H acts in a Hamiltonian manner on a symplectic manifold M , with
moment map µ : M → h∗, and we define the Hamiltonian reduction µ−1(0)/H which is a
symplectic manifold. Note that µ can be viewed as a Poisson homomorphism between Poisson
algebras µ : S(h) = O(h∗) → O(M). In the quantum setting, we therefore must consider a
group H acting on an algebra A, and the natural way to quantize µ is to ask for an algebra
homomorphism

µ : U(h)→ A.

This is the input data that one must supply. The classical condition that the moment map is
H-equivariant and dual to the action map becomes the condition that µ is H-invariant and

z · a = [µ(z), a], ∀z ∈ h.

Finally, classically, we considered the quotient M/H, for which O(M/H) = O(M)H ⊂ O(M)
is a Poisson sub-algebra, so the following is a natural way to quantize the locus µ−1(0)/H ⊂
M/H cut out by µ(m) = 0.

Definition. The quantum Hamiltonian reduction of A by H is the algebra

AH/(Aµ(h))H .

Note that Aµ(h) ⊂ A is only a left ideal, but one can check that, after taking H-invariants,
(Aµ(h))H ⊂ AH is a two-sided ideal.

If H is reductive, the operation of quotienting by Aµ(h) commutes with the operation of
taking H-invariants.

To replace 0 with a coadjoint orbitO ⊂ h∗, the equation µ(m) = 0 is replaced by µ(m) ∈ O.
In the quantum setting, we need to find an ideal I ⊂ U(h) which quantizes the orbit O, in
the sense that U(h)/I is a quantization of O. Then the quantum Hamiltonian reduction is

AH/(Aµ(I))H .

When O = 0, the ideal I is the augmentation ideal, i.e. the kernel of U(h) → C, so that
Aµ(I) = Aµ(h) and we recover the previous case.
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Let us implement this for the Hitchin system (without punctures). We should take the
(huge!) algebra A := D(G(K)) of differential operators, and the quantum Hitchin system
should be obtained from some 2-sided-invariant differential operators on G(K).

This is an infinite-dimensional group and there is actually quite a bit of technical trouble
in talking about differential operators on such a group. But this was sorted out by Beilinson
and Drinfeld and others, and we will ignore such issues and pretend L := G(K) is an ordinary
Lie group.

What are 2-sided-invariant differential operators on L? Left-invariant differential operators
are well-known to be identified with the universal enveloping algebra U(l) of the Lie algebra
of L. Then 2-sided-invariant differential operators are therefore identified with

U(l)L = Z(U(l)),

the center of U(l). Explicitly, l = g((t)), but for G semisimple, unfortunately the center of
U(l) is trivial. (Technically, since l is infinite-dimensional, one should take a completion of
the universal enveloping algebra, but, even so, the center is still trivial.)

We can explain what went wrong. Classically, recall that H2 = 1
2 trφ2, and the Higgs field

φ has the form φ(z) dz with φ ∈ g((t)). Writing φ =: ∑
φnz

−n,

H2 = 1
2

∑
n

zn
∑
m

φmφn−m

= 1
2

∑
n

zn
∑
m,i

φimφ
i
n−m

where, in the second equality, we picked an orthonormal basis ai of g and wrote φm =: ∑
i φ

i
mai.

In particular, we want [φjp, H2] = 0, but we have infinite sums and normal-ordering is required
after quantization to make it meaningful on highest-weight representations. But then this
commutation relation will fail.

Exercise. Check this.

In fact, we were doomed to fail, because Beilinson and Drinfeld showed that every globally-
defined differential operator on BunG(X) is a scalar. However, we can recall something
from physics to save the day: differential operators on a manifold are not the most natural
quantization of functions on the cotangent bundle. Recall from quantum mechanics that
classical observables on M = T ∗Y should quantize to operators on L2(Y ). But to define
L2(Y ), one must fix a measure on Y , and there is no natural choice for the measure in
general. The solution is to take L2(Y,Ω1/2), where Ω is the bundle of densities, and the
L2-norm is given by

‖f(y)|dy|1/2‖2 :=
∫
|f(y)|2 |dy|.

Thus, from this point of view, the most natural quantization of our functions on the cotangent
bundle is twisted differential operators D(Y,K1/2

Y ).

Definition. Let Y be a smooth variety and L be a line bundle on Y . An L-twisted differential
operator on Y is a differential operator acting on sections of L. Let D(Y, L⊗n) be the space
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of L⊗n-twisted differential operators. It is generated by functions and vector fields, with
relations containing n as a parameter. Namely, if one locally picks a connection on L with
curvature denoted ω, the only relation that changes is that, usually, [∇v,∇u] = ∇[v,u], but
now we ask for

[∇v,∇u] = ∇[v,u] + nω(v, u).

So it makes sense to take any n ∈ C.

Motivated by this, we replace D(BunG(X)) with D(BunG(X),K1/2). In fact K1/2 can be
obtained by descending a line bundle on the pre-quotient G(K). Note that non-trivial line
bundles exist on loop groups, in contrast to on ordinary Lie groups, because H2 of a loop
group is H3 of the original group by transgression. There exists a Kac–Moody group Ĝ such
that

1→ C× → Ĝ→ G((t))→ 1;

this is just a central extension. The Lie algebra of Ĝ is the affine Kac–Moody algebra

ĝ := g((t))⊕ CK

with commutator given by [a(t), b(t)] := [a, b](t) + Rest=0(a(t) db(t))K. The form on g is
normalized so that long roots have squared length 2.

Theorem. Let E be the G((t))2-equivariant principal C×-bundle on G((t)) given by Ĝ. Then
KBunG(X) is obtained by reduction of E−2h∨ where h∨ is the dual Coxeter of G.

So we need to work with two-sided-invariant elements in D(G((t)), E−h∨), which is the
center of the quotient

Û(ĝ)/〈K = −h∨〉

where Û(ĝ) denotes a suitable completion of the universal enveloping algebra U(ĝ).

Theorem (Feigin–Frenkel, 1991). The center of Û(ĝ)/〈K = k〉 is non-trivial if and only if
k = −h∨, and all classical Hitchin Hamiltonians Pi(φ) lift to this center and can therefore be
quantized.

In other words, there is a so-called quantum anomaly: K must be a specific non-zero value
in order for the center to be non-trivial. The value of K is called the level, and this special
value −h∨ is called the critical level. Representation theory of ĝ behaves very differently at
the critical level due to the presence of this non-trivial center.

Theorem (Beilinson–Drinfeld). The two-sided-invariant differential operators on G((t)) act-
ing on E−h∨ descend to differential operators on BunG(X). This map is surjective onto the
algebra

D(BunG(X),K1/2).

This algebra is commutative, and is a polynomial algebra with (g − 1) dimG = dim BunG(X)
generators that quantize the Hitchin system.
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The commutativity may be surprising. An example to keep in mind is globally-defined
differential operators on an elliptic curve: since they are globally-defined, they have constant
and hence commutative coefficients.

Example. Quantum Hitchin systems include, as special cases, the Gaudin system, elliptic
Calogero–Moser, affine Toda, etc. (One has to quantize the twisted Hitchin system to get
elliptic Calogero–Moser.) The previous issue with ordering ambiguity is solved systematically
by this Beilinson–Drinfeld theorem, although it is rather hard to compute the higher quantum
Hamiltonians explicitly.

Consider the quantization of the classical 1
2 trφ2. In the quantum setting, it corresponds

(upstairs on the loop group) to
Tn := 1

2
∑
m,i

:φimφin−m:

where :: denotes normal-ordering, i.e. put the term with bigger index (m or n−m) first.

Theorem (Sugawara construction).

[φp, Tn] = p(K + h∨)φn+p

[Tn, Tm] = (K + h∨)(n−m)Tm+n + n3 − n
12 K(K + h∨) dim g · δn−m.

Hence, when K 6= −h∨, the operators

Ln := Tn
K + h∨

form a Virasoro algebra with central charge c = K dim g
K+h∨ .

Beilinson–Drinfeld used the Feigin–Frenkel theorem as input, and with a lot of work, they
were able to construct the quantum Hitchin system and prove its quantum integrability.

Remark. Analytic Langlands is the spectral theory of the quantum Hitchin system acting
on L2(BunG(X)).

1.3 Problem session

Problem 1. Recall the Gaudin system in N variables

Gi =
∑
j 6=i

−(xi − xj)2∂i∂j + (Λixj − Λjxi)(∂i − ∂j)
ti − tj

.

For N = 4 this reduces to a second order differential operator L in 1 variable with 4 sin-
gularities. Compute this operator after sending (t1, t2, t3, t4) 7→ (0, 1,∞, t). The answer for
Λi = −1 should be the Lamé operator (with parameter −1/2)

L = ∂x(x− 1)(x− t)∂ + x.

(Hint: you can get the general shape of L by using that it has 4 regular singularities.)
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Problem 2. Let E be the elliptic curve y2 = x(x− 1)(x− t). Let us lift L to E. Show that
the lift L̃ is the Darboux operator

L̃ = ∂2
z −

3∑
i=0

Λi(Λi + 1)℘(z + ε; τ)

for ε1 = 0, ε2 = 1/2, ε3 = τ/2, and ε4 = (1 + τ)/2.

Problem 3. An oper for SL2 on a smooth curve X is a differential operator

L = ∂2 + u : K−1/2
X → K

3/2
X .

Show that this notion is well-defined and compute how L transforms under coordinate changes
in X. (Hint: you should see the object called “Schwarzian derivative”.)

Problem 4. Let X be a smooth irreducible projective curve of genus g > 1 and fix a square
root K1/2

X . Show that X admits a unique vector bundle EX such that

0→ K
1/2
X → EX → K

−1/2
X → 0

is a non-split short exact sequence. Show that SL2 opers on X are equivalent to connections
on EX . Show that opers on X exist and form a torsor over H0(X,K⊗2

X ) (i.e. an affine space
of dimension 3g − 3). Compute opers on a genus-2 curve using the hyperelliptic realization.

Problem 5. Show that the coadjoint representation of the Virasoro algebra C((t))∂z ⊕Cc is
isomorphic to the space of “opers” α∂2 + u : K−1/2 → K3/2 on D×, for α ∈ C, as a module
over Aut(D).
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