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1 Lecture 4

1.1 G-bundles with parabolic structures

Let G be an affine algebraic group, H C G be a closed subgroup, and £ be a G-bundle on X.
Pick a point z € X.

Definition. An H-structure on £ at x is an H-orbit in F,,.

Note that there are a G/H’s worth of choices for H-structures. Note also that H matters
only up to conjugation, because right-multiplication by a group element g € G will transform
an H-orbit into a gH g~ '-orbit.

Let G now be connected and reductive. A subgroup P C G is parabolic if it contains a
Borel, or, equivalently, if the quotient G/P is a projective variety. For instance, for GL,,
if n =mn1 4+ --- 4+ n, is a composition, then the parabolic subgroup corresponding to this
composition consists of upper block-diagonal matrices with blocks of size ni,...,n,. The
smallest parabolic is the Borel B, where all n; = 1.

Definition. Let Bung (X, t1,...,tN, P1,..., Py) be the moduli stack of G-bundles on X with
a P;-structure at t; fori=1,...,N.

It is clear that we have a fibration
Bun(;<X,t1, e tN, Pr, . 7IDN) — Bung(X)
with fiber G/P; x --- x G/Px.

Example. Since GL,-bundles are the same as rank-n vector bundles, let £ denote the GL,,-
bundle and E denote the associated rank-n vector bundle. Canonically,

&, = {bases in E,}

is the fiber of £ at a point x € X. In particular, if P is a parabolic subgroup associated to
the composition n = nj; + --- + n,, then P is the stabilizer of a partial flag

ocvic.---CcV,=V



where the quotients V;/V;_; are vector spaces of dimensions n;, for i = 1,...,r. So a P-
structure is a set of bases compatible with this flag, i.e. there is an nested sequence of subsets
of the basis which are bases of the V;. Thus, choosing a P-structure is equivalent to fixing a
flag in F,.

Example. The basic example we will consider is G = GLg and P, = B = (; :) By the

discussion above, a B-structure at ¢; is the choice of a line ¢; C Ey,.

We want to consider parabolic structures because it enables us to consider ¢ = 0 and
g = 1. This is because, without the marked points and extra structure, there are no stable
bundles for g < 2; all bundles have non-trivial automorphism groups, even if G is adjoint.
However, with the extra data, automorphisms must preserve it, so the automorphism group
shrinks. In particular, there will be a lot of objects with trivial automorphism group.

In fact, if N > 3 and G is adjoint, then a generic G-bundle on P! with parabolic structures
has trivial automorphism group.! For example, consider G = PGLy and let E be the trivial
G-bundle on X. Then Aut(E) = PGLy. But we have parabolic structures ¢1, ..., ¢y, where
¢; € PE;, = P! for each i. So the set Bun (X, t1,...,txn, P, ..., Py) of parabolic structures
on trivial bundles is just [(P')Y/PGLs]. This is still stacky, because when N points in P!
coincide, there is still a non-trivial automorphism group. But we can consider the smaller
open set given by distinct points (y1,...,yn) € (P')VN. It is well-known that PGLy acts 3-
transitively on P!, i.e. given three distinct points on P!, there is a unique element in PGLo
which sends them to (0,1, 00). Hence

(P12 C [(P)Y/ PGLy

is the open set of N distinct points. It is a variety.
In general,

Bung™ (X, t1,...,tn, Pr,..., Py) = (HG/H)/G

where the G-action is diagonal.

1.2 Hitchin system with parabolic structures

Recall that we have constructed the Hitchin system by realizing Bung(X) as a double quotient,
and then descending invariant functions upstairs on the loop group. We may do the same
when there is parabolic structure. Namely, recall that

Bung(X) = G(X \ {t1,....tn )\ [[G(DX)/ [ G(Dy,),
and parabolic structures are local at each of the ¢;, so we should modify the right quotient.
Let
ev: G(D) = G
9(z) = 9(0)

!There is more than one notion of stability for bundles with parabolic structures, but for us it will not
matter which notion we use.




be the evaluation function at z = 0, and let P; := ev'(P;). In other words, it consists of
Taylor series whose constant term lies in P; C G. Then

Bung(X,t1,...,tx, Pr,...,Py) = G(X \ {t1,... ,tN})\HG(Dg)/Hé.

The discrepancy between Bung(X,t1,...,tn, P1,..., Py) and Bung(X) is therefore exactly
as stated earlier.

Now take the usual Hamiltonians H; j, = Res P;,(¢)z} on T*G(Dy;) x -+ x T*G(Dy,),
where z; is a local coordinate around ¢;, and do the same reduction as before but now with
respect to the subgroup G(X \ {t1,...,tn}) x [I; P;. The result is an integrable system on
T*Bung(X,t1,...,tn, P1,..., Py). Points in this space are pairs (F, ¢) where F is a bundle
with parabolic structure, and ¢ € QY(X \ {t1,...,tn},ad E) is a Higgs field with singularities.
One can check that the condition is:

¢ can have at most first-order poles at the points ¢y, ..., ¢y, and the residue Res, ¢
strictly preserves the flag F; (specified by the parabolic structure) at ¢;.

Here, “strictly” means that it lies in the unipotent radical of the stabilizer P; of F;.

Exercise. Check this. For instance, in the G = GL,, case, it means that the residue preserves
the flag and acts by 0 on the associated graded.

Example. Let’s compute the Hitchin system for PGLy in genus g = 0. For this purpose, we
will assume for convenience that ¢,...,ty € A! C P! and that the parabolic structure at t;
is given by y; € A'. The Higgs field ¢ is a 1-form with simple poles at ¢;, valued in sly. So

N
A;
6=>_
i=1

z —

dz, A; € slo,
Zq
satisfying the following conditions. First, ¢ must be regular at co € P! because there is no

marking/puncture there. This is the case if and only if Zﬁil A; = 0. Second, the A; must be

nilpotent, i.e. A; <y> = 0. This is the condition

()

which says b = —ay and d = —cy, and the sly condition says d = —a, so a = cy. Hence

A= <cy cy2> .
c —cy
2
o Y TY
Ai =p; (1 _yi> .

Hence we have



One may check that p; are the momentum coordinates. In particular, the symplectic form is
> dy; A dp;. Let’s compute the Hitchin Hamiltonians:

_ Ll Ai 4 2
H2—§trqb _tr<zzj:z—tiz—tj) (dz)*.

The i = j terms drop out, because A; is nilpotent and thus A? = 0. The result is
tr A; A
Hy = ) _(d2)?.
DD A E—

Using the identity

(z—a)l(z—b)_aib(zia_zib)’

this can be rewritten as

It remains to compute the trace:

2 2
Yi —Y; Yi —Y; 2
A;A; = pips i T = —pps(us — v )2
tr j DiP; tr (1 _yi> ( 1 _yj) DiPj (yz y])

Finally, let’s take residues (the result is well-defined up to scaling, which doesn’t matter for
us):
pip; (Yi — ;)
G; = Resy, Hy = Z — s
. tj —t;
J#i
Since 3°; A; = 0, we have S, p; = >, pivi = >.; piv2 = 0, so (y,p) belongs to u~(0) c T*CV.
Also, the G; give only N — 3 independent integrals of motion since ), G; = >, t;:G; =
S t2G; = 0, but this is exactly sufficient to get an integrable system on p~1(0)/ PGLg, which
has dimension N — 3.

1.3 Twisted Hitchin system

It turns out that Hitchin systems for bundles with parabolic structures have a twisted gen-
eralization, which allows us to produce more general integrable systems. To introduce them,
we first explain Hamiltonian reduction along orbits. Let M be a symplectic manifold, with
Hamiltonian action by a group H. Let p: M — h* be a moment map. Previously, we
considered 1 ~1(0)/H, but more generally, we may consider

pH(0)/H

for any H-orbit O C b*, called a coadjoint orbit. If the H-action is nice, this quotient also has
a canonical symplectic structure, and we can run the same construction of integrable systems



as before: if F; are H-invariant functions in involution on M, then they descend to functions
F; on p~1(O)/M which are also in involution.
In the setting of Hitchin systems, recall the group

G(X \ {t1,...,tn}) x HG(Dti),

acting on [[; G(D;), and let ker denote the kernel of the evaluation map [[G(Dy,) — GV at
(t1,...,ty). We reduce first by ker, after which there is a residual action of GV, and then
for a coadjoint orbit O C (g*)V, we can descend the Hitchin Hamiltonians to u=1(0)/G".
Parabolic structures will arise from specific choices of O.

As before, points in p~1(O)/GY are Higgs pairs (E, ¢) where ¢ must satisfy some con-
ditions. To illustrate, take G = PGLy. At t;, take the coadjoint orbit in sl = sly given by

diag(A;, —A;) for generic A;. (The previous Hitchin system with parabolic structure corre-
sponds to the coadjoint orbit of a nilpotent element (8 S) .) Then ¢ has simple poles at

each t; with
Resy, ¢le, = Ni -id .

As before, writing ¢ = 3, -Ai- dz,

1 z—t;

Solving, we obtain

A — (—)\i +pivi 2Ny —Pﬂﬁ)
bi i — Pili

The trace becomes
tr(A;A;) = —(yi — y;)*pipj + 2(Nipj — \jpi) (Wi — yj) + 2N\,

The resulting Hamiltonians

2
E:_ i — Y3)°Pipj £ 2(Aipj — Ajpi) (Wi — 5) + 22X
J#i g J

define the deformed or twisted Garnier system. The ordinary Garnier system is a particular
limit of this, when A; — O.

Example (Genus 1). Let X be an elliptic curve with zero denoted 0 € X, and consider a
generic bundle of degree 0 and rank n. Line bundles of degree-0 are all of the form

Ly=0(g) @ 0(0)~"
for a point ¢ € X, with a meromorphic section given by 0592(;)(])' Atiyah showed that generic
rank-n bundles all have the form




say with ¢; # ¢j. Consider G = PGL,, put one puncture at 0, and perform the twisted
reduction procedure for the orbit

O = (diag(c,c, ..., ¢, (—n+ 1)c)) C sly.

As ¢ — 0, this orbit degenerates into a rank-1 nilpotent matrix, corresponding to the parabolic
subgroup P with blocks of size (n — 1) x (n — 1) and 1 x 1, i.e. G/P = P* ! Since
Aut(E) = (C*)"! acting on P"~!, we consider the free orbit of the vector whose entries are
all non-zero — without loss of generality, (1,1,...,1). We think of the components ¢;; of ¢
as sections of Ly, ® L;jl, and they should have a first-order pole at z = 0 whose residue acts
on the vector (1,...,1) with eigenvalue (1 — n)c. Hence, for i # j

_ 0 —dit+q)
Y0(2)0(q; — q5)

and ¢;; = p; are the momenta. What is the condition for the matrix A = (a;;)? It must
satisfy

¢zy

1 1

1 1
Al . | =10 —-n)c

1 1

and have the diagonal form as above. This means that all off-diagonal entries a;; are equal
to some constant C, and so

0(z — qi + q5)

0(2)0(a; — aj)

This ¢ is Krichever’s Lax matrix for the elliptic Calogero—Moser (CM) system. The resulting
trace can be computed to be

r 2 C Qz“‘q_j)e( QJ+qZ)‘
tro? => pl+ ; T T—,:

One can check that the second summand is C'(p(2) —p(g; —q;)), where p(2) is the Weierstrass
function, because this expression has zeros and poles in the correct places. Coefficients of non-
zero powers of z may be constant and are not so interesting, but the constant coefficient is

= Zp? —c Z 0(qi

i#]

¢ij =C

which is exactly the second Hamiltonian in the elliptic CM system. Higher traces tr A'¢ yield
the higher Hamiltonians, establishing the complete integrability of the elliptic CM system.

1.4 Problem session

Problem 1. Let A: C* — Mat,x,(C) be a meromorphic function with det A # 0. Let
g € C* with |g| < 1 and consider the g-difference equation

flgz) = A(2)f(2) (1)



for f: C* — Maty,xn(C). Show that (1) has a meromorphic solution f(z) with det f # 0.
(Hint: use the GAGA theorem.)

Problem 2. The Garnier system is the Hitchin system for parabolic PGLy-bundles on P!
with marked points 1, ...,txy € C, parabolic structures y1,...,yn, and Higgs field

DiYi —piy@? dz
q’:Z Di —PiVYi

Z—ti

=1

Find the spectral curve and compute its genus. Compute it explicitly for N = 4. (Hint: let
a,b be coprime polynomials of X of degree n, and np, and with simple roots. What is the
genus of the normalization of y? = a(X)/b(X)?)

Problem 3. Show that for N = 4 the Garnier system is equivalent to the elliptic CM flow
for 2 particles. What is a geometric reason for it? Solve the Hamilton equation of the flow.

Problem 4. Calculate the first integral Hs for the elliptic CM system with Hamiltonian
H=%Y, i — 2325 9(gi — g;) such that

N
Hs = Z p3 + (lower degree terms in p;).
i=1

Problem 5. Let L = 92 -2 | o(2 — ¢;). Show that L commutes with a third-order differ-
ential operator if and only if (¢1,...,qn) is a critical point of the Calogero-Moser potential

> isi 9(d — qj)-
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