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1 Lecture 4

1.1 G-bundles with parabolic structures

Let G be an affine algebraic group, H ⊂ G be a closed subgroup, and E be a G-bundle on X.
Pick a point x ∈ X.

Definition. An H-structure on E at x is an H-orbit in Ex.

Note that there are a G/H’s worth of choices for H-structures. Note also that H matters
only up to conjugation, because right-multiplication by a group element g ∈ G will transform
an H-orbit into a gHg−1-orbit.

Let G now be connected and reductive. A subgroup P ⊂ G is parabolic if it contains a
Borel, or, equivalently, if the quotient G/P is a projective variety. For instance, for GLn,
if n = n1 + · · · + nr is a composition, then the parabolic subgroup corresponding to this
composition consists of upper block-diagonal matrices with blocks of size n1, . . . , nr. The
smallest parabolic is the Borel B, where all ni = 1.

Definition. Let BunG(X, t1, . . . , tN , P1, . . . , PN ) be the moduli stack of G-bundles on X with
a Pi-structure at ti for i = 1, . . . , N .

It is clear that we have a fibration

BunG(X, t1, . . . , tN , P1, . . . , PN )→ BunG(X)

with fiber G/P1 × · · · ×G/PN .

Example. Since GLn-bundles are the same as rank-n vector bundles, let E denote the GLn-
bundle and E denote the associated rank-n vector bundle. Canonically,

Ex = {bases in Ex}

is the fiber of E at a point x ∈ X. In particular, if P is a parabolic subgroup associated to
the composition n = n1 + · · ·+ nr, then P is the stabilizer of a partial flag

0 ⊂ V1 ⊂ · · · ⊂ Vr = V
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where the quotients Vi/Vi−1 are vector spaces of dimensions ni, for i = 1, . . . , r. So a P -
structure is a set of bases compatible with this flag, i.e. there is an nested sequence of subsets
of the basis which are bases of the Vi. Thus, choosing a P -structure is equivalent to fixing a
flag in Ex.

Example. The basic example we will consider is G = GL2 and Pi = B =
(
∗ ∗
0 ∗

)
. By the

discussion above, a B-structure at ti is the choice of a line `i ⊂ Eti .
We want to consider parabolic structures because it enables us to consider g = 0 and

g = 1. This is because, without the marked points and extra structure, there are no stable
bundles for g < 2; all bundles have non-trivial automorphism groups, even if G is adjoint.
However, with the extra data, automorphisms must preserve it, so the automorphism group
shrinks. In particular, there will be a lot of objects with trivial automorphism group.

In fact, if N ≥ 3 and G is adjoint, then a generic G-bundle on P1 with parabolic structures
has trivial automorphism group.1 For example, consider G = PGL2 and let E be the trivial
G-bundle on X. Then Aut(E) = PGL2. But we have parabolic structures `1, . . . , `N , where
`i ∈ PEti = P1 for each i. So the set Buntriv

G (X, t1, . . . , tN , P1, . . . , PN ) of parabolic structures
on trivial bundles is just [(P1)N/PGL2]. This is still stacky, because when N points in P1

coincide, there is still a non-trivial automorphism group. But we can consider the smaller
open set given by distinct points (y1, . . . , yN ) ∈ (P1)N . It is well-known that PGL2 acts 3-
transitively on P1, i.e. given three distinct points on P1, there is a unique element in PGL2
which sends them to (0, 1,∞). Hence

(P1)N−3 ⊂ [(P1)N/PGL2]

is the open set of N distinct points. It is a variety.
In general,

Buntriv
G (X, t1, . . . , tN , P1, . . . , PN ) ∼=

(∏
i

G/Pi

)
/G

where the G-action is diagonal.

1.2 Hitchin system with parabolic structures

Recall that we have constructed the Hitchin system by realizing BunG(X) as a double quotient,
and then descending invariant functions upstairs on the loop group. We may do the same
when there is parabolic structure. Namely, recall that

BunG(X) = G(X \ {t1, . . . , tN})\
∏
i

G(D×ti )/
∏
i

G(Dti),

and parabolic structures are local at each of the ti, so we should modify the right quotient.
Let

ev : G(D)→ G

g(z) 7→ g(0)
1There is more than one notion of stability for bundles with parabolic structures, but for us it will not

matter which notion we use.
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be the evaluation function at z = 0, and let P̃i := ev−1(Pi). In other words, it consists of
Taylor series whose constant term lies in Pi ⊂ G. Then

BunG(X, t1, . . . , tN , P1, . . . , PN ) = G(X \ {t1, . . . , tN})\
∏
i

G(D×ti )/
∏
i

P̃i.

The discrepancy between BunG(X, t1, . . . , tN , P1, . . . , PN ) and BunG(X) is therefore exactly
as stated earlier.

Now take the usual Hamiltonians Hi,j,n := ResPti(φ)znj on T ∗G(D×t1) × · · · × T ∗G(D×tN ),
where zj is a local coordinate around tj , and do the same reduction as before but now with
respect to the subgroup G(X \ {t1, . . . , tN}) ×

∏
i P̃i. The result is an integrable system on

T ∗BunG(X, t1, . . . , tN , P1, . . . , PN ). Points in this space are pairs (E, φ) where E is a bundle
with parabolic structure, and φ ∈ Ω1(X \{t1, . . . , tN}, adE) is a Higgs field with singularities.
One can check that the condition is:

φ can have at most first-order poles at the points t1, . . . , tN , and the residue Resti φ
strictly preserves the flag Fi (specified by the parabolic structure) at ti.

Here, “strictly” means that it lies in the unipotent radical of the stabilizer Pi of Fi.

Exercise. Check this. For instance, in the G = GLn case, it means that the residue preserves
the flag and acts by 0 on the associated graded.

Example. Let’s compute the Hitchin system for PGL2 in genus g = 0. For this purpose, we
will assume for convenience that t1, . . . , tN ∈ A1 ⊂ P1 and that the parabolic structure at ti
is given by yi ∈ A1. The Higgs field φ is a 1-form with simple poles at ti, valued in sl2. So

φ =
N∑
i=1

Ai
z − zi

dz, Ai ∈ sl2,

satisfying the following conditions. First, φ must be regular at ∞ ∈ P1 because there is no
marking/puncture there. This is the case if and only if

∑N
i=1Ai = 0. Second, the Ai must be

nilpotent, i.e. Ai

(
y
1

)
= 0. This is the condition

(
a b
c d

)(
y
1

)
= 0,

which says b = −ay and d = −cy, and the sl2 condition says d = −a, so a = cy. Hence

A =
(
cy −cy2

c −cy

)
.

Hence we have
Ai = pi

(
yi −y2

i

1 −yi

)
.
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One may check that pi are the momentum coordinates. In particular, the symplectic form is∑
dyi ∧ dpi. Let’s compute the Hitchin Hamiltonians:

H2 = 1
2 trφ2 = tr

∑
i,j

Ai
z − ti

Aj
z − tj

 (dz)2.

The i = j terms drop out, because Ai is nilpotent and thus A2
i = 0. The result is

H2 =
∑
i 6=j

trAiAj
(z − ti)(z − tj)

(dz)2.

Using the identity
1

(z − a)(z − b) = 1
a− b

( 1
z − a

− 1
z − b

)
,

this can be rewritten as
H2 =

∑
i 6=j

trAiAj
(ti − tj)(z − ti)

(dz)2.

It remains to compute the trace:

trAiAj = pipj tr
(
yi −y2

i

1 −yi

)(
yj −y2

j

1 −yj

)
= −pipj(yi − yj)2.

Finally, let’s take residues (the result is well-defined up to scaling, which doesn’t matter for
us):

Gi := Resti H2 =
∑
j 6=i

pipj(yi − yj)2

tj − ti
.

Since
∑
iAi = 0, we have

∑
i pi =

∑
i piyi =

∑
i piy

2
i = 0, so (y, p) belongs to µ−1(0) ⊂ T ∗CN .

Also, the Gi give only N − 3 independent integrals of motion since
∑
iGi =

∑
i tiGi =∑

i t
2
iGi = 0, but this is exactly sufficient to get an integrable system on µ−1(0)/PGL2, which

has dimension N − 3.

1.3 Twisted Hitchin system

It turns out that Hitchin systems for bundles with parabolic structures have a twisted gen-
eralization, which allows us to produce more general integrable systems. To introduce them,
we first explain Hamiltonian reduction along orbits. Let M be a symplectic manifold, with
Hamiltonian action by a group H. Let µ : M → h∗ be a moment map. Previously, we
considered µ−1(0)/H, but more generally, we may consider

µ−1(O)/H

for any H-orbit O ⊂ h∗, called a coadjoint orbit. If the H-action is nice, this quotient also has
a canonical symplectic structure, and we can run the same construction of integrable systems
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as before: if Fi are H-invariant functions in involution on M , then they descend to functions
F̄i on µ−1(O)/M which are also in involution.

In the setting of Hitchin systems, recall the group

G(X \ {t1, . . . , tN})×
∏
i

G(Dti),

acting on
∏
iG(D×ti ), and let ker denote the kernel of the evaluation map

∏
G(Dti)→ GN at

(t1, . . . , tN ). We reduce first by ker, after which there is a residual action of GN , and then
for a coadjoint orbit O ⊂ (g∗)N , we can descend the Hitchin Hamiltonians to µ−1(O)/GN .
Parabolic structures will arise from specific choices of O.

As before, points in µ−1(O)/GN are Higgs pairs (E, φ) where φ must satisfy some con-
ditions. To illustrate, take G = PGL2. At ti, take the coadjoint orbit in sl∗2

∼= sl2 given by
diag(λi,−λi) for generic λi. (The previous Hitchin system with parabolic structure corre-

sponds to the coadjoint orbit of a nilpotent element
(

0 ∗
0 0

)
.) Then φ has simple poles at

each ti with
Resti φ|`i = λi · id .

As before, writing φ =
∑
i
Ai
z−ti dz,

Ai

(
yi
1

)
= λi

(
yi
1

)
.

Solving, we obtain

Ai =
(
−λi + piyi 2λiyi − piy2

i

pi λi − piyi

)
.

The trace becomes

tr(AiAj) = −(yi − yj)2pipj + 2(λipj − λjpi)(yi − yj) + 2λiλj .

The resulting Hamiltonians

Gi(λ1, . . . , λN ) =
∑
j 6=i

−(yi − yj)2pipj + 2(λipj − λjpi)(yi − yj) + 2λiλj
ti − tj

define the deformed or twisted Garnier system. The ordinary Garnier system is a particular
limit of this, when λi → 0.

Example (Genus 1). Let X be an elliptic curve with zero denoted 0 ∈ X, and consider a
generic bundle of degree 0 and rank n. Line bundles of degree-0 are all of the form

Lq = O(q)⊗O(0)−1

for a point q ∈ X, with a meromorphic section given by θ(z−q)
θ(z) . Atiyah showed that generic

rank-n bundles all have the form

E = Lq1 ⊕ · · · ⊕ Lqn ,
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say with qi 6= qj . Consider G = PGLn, put one puncture at 0, and perform the twisted
reduction procedure for the orbit

O := 〈diag(c, c, . . . , c, (−n+ 1)c)〉 ⊂ sl2.

As c→ 0, this orbit degenerates into a rank-1 nilpotent matrix, corresponding to the parabolic
subgroup P with blocks of size (n − 1) × (n − 1) and 1 × 1, i.e. G/P = Pn−1. Since
Aut(E) = (C×)n−1, acting on Pn−1, we consider the free orbit of the vector whose entries are
all non-zero — without loss of generality, (1, 1, . . . , 1). We think of the components φij of φ
as sections of Lqi ⊗ L−1

qj
, and they should have a first-order pole at z = 0 whose residue acts

on the vector (1, . . . , 1) with eigenvalue (1− n)c. Hence, for i 6= j

φij = aij
θ(z − qi + qj)
θ(z)θ(qi − qj)

,

and φii = pi are the momenta. What is the condition for the matrix A = (aij)? It must
satisfy

A


1
1
...
1

 = (1− n)c


1
1
...
1


and have the diagonal form as above. This means that all off-diagonal entries aij are equal
to some constant C, and so

φij = C
θ(z − qi + qj)
θ(z)θ(qi − qj)

.

This φ is Krichever’s Lax matrix for the elliptic Calogero–Moser (CM) system. The resulting
trace can be computed to be

trφ2 =
∑

p2
i + C

∑
j 6=i

θ(z − qi + qj)θ(z − qj + qi)
θ(z)2θ(qi − qj)2 .

One can check that the second summand is C(℘(z)−℘(qi−qj)), where ℘(z) is the Weierstrass
function, because this expression has zeros and poles in the correct places. Coefficients of non-
zero powers of z may be constant and are not so interesting, but the constant coefficient is

H2 =
∑

p2
i − c2∑

i 6=j
℘(qi − qj),

which is exactly the second Hamiltonian in the elliptic CM system. Higher traces tr∧iφ yield
the higher Hamiltonians, establishing the complete integrability of the elliptic CM system.

1.4 Problem session

Problem 1. Let A : C× → Matn×n(C) be a meromorphic function with detA 6≡ 0. Let
q ∈ C× with |q| < 1 and consider the q-difference equation

f(qz) = A(z)f(z) (1)
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for f : C× → Matn×n(C). Show that (1) has a meromorphic solution f(z) with det f 6≡ 0.
(Hint: use the GAGA theorem.)

Problem 2. The Garnier system is the Hitchin system for parabolic PGL2-bundles on P1

with marked points t1, . . . , tN ∈ C, parabolic structures y1, . . . , yN , and Higgs field

Φ =
N∑
i=1

(
piyi −piy2

i

pi −piyi

)
dz

z − ti
.

Find the spectral curve and compute its genus. Compute it explicitly for N = 4. (Hint: let
a, b be coprime polynomials of X of degree na and nb, and with simple roots. What is the
genus of the normalization of y2 = a(X)/b(X)?)

Problem 3. Show that for N = 4 the Garnier system is equivalent to the elliptic CM flow
for 2 particles. What is a geometric reason for it? Solve the Hamilton equation of the flow.

Problem 4. Calculate the first integral H3 for the elliptic CM system with Hamiltonian
H =

∑N
i=1 p

2
i − 2

∑
j>i ℘(qi − qj) such that

H3 =
N∑
i=1

p3
i + (lower degree terms in pi).

Problem 5. Let L = ∂2
z − 2

∑N
i=1 ℘(z− qi). Show that L commutes with a third-order differ-

ential operator if and only if (q1, . . . , qN ) is a critical point of the Calogero–Moser potential∑
j>i ℘(qi − qj).
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