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1 Lecture 3

1.1 Classical Hitchin system for general G

Last time we discussed the classical Hitchin system, in the case that G = SLn and X is a
smooth projective curve of genus g ≥ 2 over C. We considered the moduli space Bun◦G(X)
of stable G-bundles on X, or equivalently, rank-n vector bundles with trivial determinant.
Its cotangent bundle M◦g := T ∗Bun◦G(X) consists of Higgs pairs (E, φ) where E is a stable
G-bundle and φ ∈ Ω1(X, adE) is a Higgs field. The Hitchin base is

B :=
n−1⊕
i=1

H0(X,K⊗(i+1)
X ),

with dimB = dim BunG(X) = (n2 − 1)(g − 1) =: d, and we constructed the Hitchin map

p : T ∗Bun◦G(X)→ B
(E, φ) 7→ (tr∧2φ,− tr∧3φ, . . . , (−1)n tr∧nφ).

Theorem (Hitchin). p defines an integrable system.
This means, in part, that coordinate functions on B pulled back by p Poisson com-

mute on T ∗Bun◦G(X). Explicitly, if we choose a basis b1, . . . , bd ∈ B and write p(E, φ) =∑d
j=1Hj(E, φ)bj , then the coordinate functions Hj satisfy {Hi, Hj} = 0.

Today we will generalize this to an arbitrary semisimple G. To do this, we will need
something about the Lie algebra g of G. Namely, recall Chevalley’s theorem:

C[g]G = C[P1, . . . , Pr],

where r := rankG and the Pi are homogeneous polynomials. Let di := degPi.
Example. C[sln]SLn = C[tr∧2A, tr∧3A, . . . , tr∧nA].

Let P ∈ C[g]G be homogeneous of degree m (semisimple Lie algebras have no invariant
linear functions, so m ≥ 2), and let (E, φ) be a Higgs pair. A conjugation-invariant function
like P may be evaluated fiber-wise on Higgs fields φ ∈ Ω1(X, adE) to produce elements

P (φ) ∈ H0(X,K⊗mX ).

The Hitchin base should therefore be B :=
⊕r

i=1H
0(X,K⊗di

X ).
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Remark. It is important to consider conjugation-invariant functions, because fibers of adE
are isomorphic to g non-canonically. So to evaluate a function on fibers of adE in a well-
defined way, it had better be conjugation-invariant.

Last time, we computed using Riemann–Roch that dimH0(X,K⊗mX ) = (2m − 1)(g − 1).
Recall that 2di − 1 are the degrees of generators of the cohomology ring of G. Hence

dimB =
∑
i

(2di − 1)(g − 1) = (g − 1) dimG = dim Bun◦G(X).

So, again, there is some hope to define an integrable system as before, using the map

p : T ∗Bun◦G(X)→ B
(E, φ) 7→ (P1(φ), . . . , Pr(φ)).

Theorem (Hitchin). p is an integrable system.

Hitchin proved this for classical groups G, and then other people completed the proof for
the exceptional cases. The proof has two parts: we must show that 1. the coordinate functions
Hi are in involution, and that 2. they are functionally independent. Functional independence
is equivalent to p being a dominant map, meaning that the image contains some open dense
subset.

1.2 Proof for Hitchin’s theorem, step 1

This step is for arbitrary G.
We will show that {Hi, Hj} = 0. For this, we must first review Marsden–Weinstein

symplectic reduction. Let Y be a manifold (or variety), and H be a Lie group (or algebraic
group) acting on Y on the right. In this case, H acts by Hamiltonian automorphisms on T ∗Y ,
and so there is a moment map

µ : T ∗Y → h∗

where h is the Lie algebra of H. This is defined to be dual to the action map

a : H → Vect(Y ) = Γ(Y, TY ),

meaning that
µ(x, p)(b) := 〈p, a(b)x〉, ∀(x, p) ∈ T ∗Y, b ∈ h.

Theorem (Marsden–Weinstein symplectic reduction). The quotient µ−1(0)/H has a natural
symplectic structure. Furthermore, if H acts freely on Y , then there is a natural isomorphism
of symplectic manifolds

µ−1(0)/H ∼= T ∗(Y/H).

This can be used to construct integrable systems as follows. Suppose dimY/H = n, and
F1, . . . , Fn are H-invariant functions on T ∗Y which Poisson-commute. Then they descend
to functions F̄i on the quotient T ∗(Y/H), by first restricting Fi to µ−1(0) ⊂ T ∗Y and then
descending. It is easy to check that {F̄i, F̄j} = 0. There is already the right number of them
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to form an integrable system; if in addition they are functionally independent, then F̄1, . . . , F̄n
form an integrable system on T ∗(Y/H).

Note that there are too few functions to form an integrable system on T ∗Y , so it was
necessary to descend to the quotient.

In general, especially when there is no effective way of writing the functions explicitly,
it is difficult to check whether a set of functions are in involution. But in this method of
constructing integrable systems, sometimes the functions Fi are in involution on T ∗Y for silly
reasons, e.g. if Y is a vector space and the Fi all depend only on the momentum coordinates
on T ∗Y = Y ⊕ Y ∗.

Recall that BunG(X) = G(X \ x)\G(K)/G(O), and denote the pre-image of Bun◦G(X)
by G◦(K) ⊂ G(K). (Recall that K = C[D∗x] ∼= C((t)) and O = C[Dx] ∼= C[[t]].) Then
G(X \ x)×G(O) acts on G◦(K) with stabilizer Z(G). So we may express

T ∗Bun◦G(X) = Hamiltonian reduction of
T ∗G◦(K) by G(X \ x)×G(O) .

To construct functions on T ∗Bun◦G(X), first trivialize the cotangent bundle of T ∗G◦(K) by
left (or right) multiplication. Then observe that there is a G(K)-invariant pairing on the Lie
algebra g(K), given by

〈a(t), b(t)〉g(K) := Rest=0〈a(t), b(t)〉g dt.

This allows us to identify g((t))∗ ∼= g((t)) dt. Hence

T ∗G◦(K) = G◦(K)× g((t)) dt.

Points are pairs (Ẽ, φ̃), and again we can take invariant functions {Pi}ri=1 on g and apply
them to φ̃ to get functions

Hi,n := Res(tnPi(φ̃)), ∀1 ≤ i ≤ r and n ∈ Z

on T ∗G◦(K). Observe that theseHi,n depend only on the momentum coordinates on T ∗G◦(K),
by construction. Note that momenta on T ∗G commute like Lie algebra elements, but our el-
ements Pi are invariant, and invariant functions of momenta do commute with momenta.
Thus

{Hi,n, Hj,m} = 0.
We have obtained infinitely many functions on T ∗G◦(K). Of course, when we descend to

the finite-dimensional manifold T ∗Bun◦G(X), they will not be functionally independent (in
fact they will be linearly dependent), but this is irrelevant for this part of the argument. It is
easy to check that the square

T ∗G◦(K)
⊕
iC((t)) (dt)di

µ−1(0)

T ∗Bun◦G(X)
⊕

iH
0(X,K⊗di

X )

(H1,...,Hr)

p
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commutes. The vertical map on the right is just (Taylor) series expansion of differentials,
and analytic continuation implies the map is injective. So Poisson-commutativity for the Hi

downstairs follows from Poisson-commutativity of the Hi,n upstairs, which we already know.

1.3 Proof for Hitchin’s theorem, step 2, for G = SLn
Now we prove functional independence, for G = SLn. This will use an important technique
which appears across the field of integrable systems: spectral curves. Take a point

b = (b2, b3, . . . , bn) ∈ B =
n−1⊕
i=1

H0(X,K⊗(i+1)
X ).

Recall that the components of the Hitchin map are, by definition, the coefficients of the
characteristic polynomial of φ. Consider the polynomial

λn + b2λ
n−2 + · · ·+ bn =:

n∏
i=1

(λ− λi).

Since deg bi = i, the quantities λi are all 1-forms on X. So

{λ1(x), . . . , λn(x)} ⊂ T ∗xX.

Varying x ∈ X produces a subset Cb ⊂ T ∗X associated to b — the graph, or Riemann surface,
of the multi-valued function λ(x). In fact Cb is an algebraic curve in T ∗X, defined by the
equation

λn + b2(x)λn−2 + · · ·+ bn(x) = 0

where λ is the coordinate along the cotangent fibers. The natural projection π : Cb → X has
degree n.

Definition. Cb is called the spectral curve of b.

Let (E, φ) ∈ T ∗Bun◦G(X). Applying p produces p(E, φ) = (b2, . . . , bn) where the bi are
just coefficients of the characteristic polynomial of φ. In other words,

λn + b2λ
n−2 + · · ·+ bn = det(λ− φ),

and the λi(x) are just eigenvalues of φ(x), for x ∈ X. So Cp(E,φ) is traced out in T ∗X by the
spectrum of φ(x) as x ∈ X varies. It is important to keep in mind that the eigenvalues are
1-forms, so they live in T ∗X.

The spectral curve C(E, φ) := Cp(E,φ) is useful because it depends only on p(E, φ). Can
we recover (E, φ) from C(E, φ) and something else?

Theorem (Hitchin). C is smooth and irreducible for generic b ∈ B.

We will not prove this, but it is not a very hard result.
If we have a Higgs field φ whose spectral curve is C, then there is an eigenline bundle

Lφ on C. The fiber of Lφ at a point λ ∈ C lying over x ∈ X is the eigenline of φ(x) with
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eigenvalue λ, in the generic situation where all eigenvalues are distinct. The vector bundle E
is then reconstructed from Lφ by

E ∼= π∗Lφ.

Algebraically, modules for OC are also modules for OX via π. Geometrically, this is because
the fiber Ex is a direct sum

⊕
λ∈π−1(x)(Lφ)λ, at least when all eigenvalues are distinct. More

strongly, we can also recover φ from Lφ, because the action of φ on E is just multiplication
by the cotangent coordinate on Lφ.

The line bundle Lφ on Cb has some degree d which is independent of b since it is a
topological invariant. (One can compute d explicitly if desired, but we will not.) Then

Lφ ∈ Picd(Cb) ∼= Jac(Cb)

and so p−1(b) ⊂ T ∗Bun◦G(X) gets identified with a subset of Jac(Cb). It remains to show that
for generic b,

dim p−1(b) = (n2 − 1)(g − 1)

and no bigger. If this dimension were too big, the dimension of the image of p must be too
small and there would be unwanted functional dependence among the functions Hi.

Observe that p−1(b) is actually contained in the kernel of the map Jac(Cb) → Jac(X)
given by L 7→ ∧nπ∗L. This is because SLn-bundles are equivalent to vector bundles of rank
n with trivial determinant. The kernel has dimension exactly

dim Jac(Cb)− dim Jac(X) = g(Cb)− g

since both Jac(Cb) and Jac(X) are group schemes. Here we used that dim Jac(Cb) = g(Cb) is
the genus of Cb. It remains to show that

g(Cb) = (n2 − 1)(g − 1) + g = n2(g − 1) + 1.

Note that while p−1(b) is still an abelian variety, it is not the Jacobian of anything.

Theorem. g(Cb) = n2(g − 1) + 1.

Proof. Since g(Cb) is deformation-invariant, we can compute it at the point b1 = b2 = · · · =
bn−1 = 0. Then all eigenvalues are distinct except when bn(x) = 0. So g(Cb) may be computed
by the Riemann–Hurwitz formula. Since

bn ∈ H0(X,K⊗nX )

is a section of a degree (2g− 2)n bundle, generically bn has (2g− 2)n simple zeros. Riemann–
Hurwitz says

χ(Cb) = (χ(X)− (2g − 2)n)n+ (2g − 2)n
= (2g − 2)(−n2 − n+ n) = −n2(2g − 2).

Since χ(X) = 2− 2g, the result is

g(Cb) = 2 + n2(2g − 2)
2 = 1 + n2(g − 1).
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This concludes the proof of Hitchin’s theorem.

Remark. Note that g(Cb) = dim Bun◦GLn
(X). Without the extra argument above to show

that p−1(0) lies in the kernel of Jac(Cb) → Jac(X), the bound given by the theorem is too
weak.

One can generalize the Hitchin system to reductive G, allowing dimZ(G) of the exponents
di in the Hitchin base to be 1. Since dimH0(X,KX) = g, which is one more than g − 1,
the resulting Hitchin base has dimension (g − 1) dimG + dimZ(G), which is still equal to
dim Bun◦G(X). Then, in the case G = GLn, the bound given by the theorem is exactly tight
enough, and we obtain that p−1(b) is dense in Jac(Cb).
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