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1 Lecture 2

1.1 Principal G-bundles on P1

Last time we proved Grothendieck’s theorem: vector bundles of rank n on P1 are uniquely of
the form O(m1) ⊕ · · · ⊕ O(mn) where m1 ≤ · · · ≤ mn are integers. We will begin today by
explaining how this generalizes to an arbitrary connected reductive group. This will require
a reformulation of this result.

Recall that rank-n vector bundles are the same as GLn-bundles, and GLn is the group
of invertible n × n matrices, so it contains a maximal torus T consisting of diagonal matri-
ces with non-zero entries on the diagonal. Over an algebraically closed field, T = (Gm)n.
Grothendieck’s theorem says that every GLn-bundle on P1 is associated to a T -bundle, mean-
ing that the structure group of the bundle reduces to the torus. The same GLn-bundle can
come from many different T -bundles, because the data of a T -bundle is sensitive to the or-
dering of the integers m1, . . . ,mn. Precisely, if E1, E2 are T -bundles on P1, then

E1 ×T GLn ∼= E2 ×T GLn

if and only if there exists a permutation w ∈ Sn such that E1 ∼= w(E2). Here Ei ×T GLn is
the GLn-bundle associated to the T -bundle Ei.

If G is a connected reductive group over an algebraically closed field, T ⊂ G is a maximal
torus, and N(T ) ⊂ G is the normalizer of T , let W := N(T )/T be the Weyl group.

Theorem. Any G-bundle on P1 is associated to a T -bundle E, and given two T -bundles E1
and E2,

E1 ×T G ∼= E2 ×T G

if and only if E1 = w(E2) for some element w ∈W .

Proof idea. Reduce to the case of vector bundles by considering representations of G.

Let T be a torus. How do we classify T -bundles on P1? We know T ∼= (Gm)n, so non-
canonically a T -bundle is just an n-tuple of integers. Canonically, let X∗(T ) := Hom(Gm, T )
be the cocharacter lattice, and recall that a T -bundle on P1 is defined by a transition map

g : U0 ∩ U∞ = Gm → T,
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which must exactly be a cocharacter after rescaling. So

{T -bundles on P1} ∼= X∗(T ).

The theorem then says that G-bundles on P1 are classified by X∗(T )/W .

Remark. If T ⊂ G is a maximal torus, then the cocharacter lattice X∗(T ) is equivalently the
character or weight lattice Λ∨ of the Langlands dual group G∨. Thus the theorem says that
G-bundles on P1 are parameterized by

Λ∨/W ∼= Λ∨+,

the set of dominant integral weights for G∨, which labels its irreducible representations.

1.2 Double quotient realization of BunG(X)
Last time, we considered a smooth irreducible projective curve X and a split connected
reductive group G over k. To this pair we attached the moduli stack BunG(X) of principal
G-bundles on X. In general, BunG(X) is a very complicated object, but most of these
complications will not be relevant for us. We defined BunG(X) via its functor of points, but
today we would like to describe BunG(X) in a slightly more explicit way.

For simplicity, let’s assume first that G is semisimple and k is algebraically closed. By
Harder’s theorem from last lecture, every E ∈ BunG(X) trivializes once any chosen point is
removed from X. So pick a k-point x ∈ X. Cover X by two charts: a disk around x, and
X \ x. In algebraic geometry, we do not have small disks, but we can take a formal disk Dx

around x instead. To consider bundles using these two charts, there is no 1-cocycle condition,
and it suffices to study the transition function on the intersection

(X \ x) ∩Dx = D×x

of the two charts. Here D×x is the punctured formal disk. To be precise, let R := O(X \ x) be
the ring of regular functions on the affine curve X \ x, and, if t is a formal coordinate at x,

O(Dx) ∼= O := k[[t]]
O(D×x ) ∼= K := k((t)).

Remark. In complex analysis, regular meromorphic functions on the punctured disk are
given by convergent Laurent series which are finite in the negative direction. We make these
series formal by removing the convergence assumption, and then they make sense over any
field.

The inclusion O ⊂ K is like a “ring of integers”, consisting of elements with valuation
≥ 0. There is also an inclusion

R ↪→ K

given by taking Laurent series expansion. This description appears to require the choice of
the coordinate t, but viewing it geometrically shows that it in fact does not. Bundles E are
defined by transition maps g(t) from Dx to X \ x, or equivalently, elements g ∈ G(K), up to
g 7→ h1gh

−1
2 where h1 ∈ G(R) and h2 ∈ G(O). We have thus proved the following proposition.
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Proposition. BunG(X)(k) = G(R)\G(K)/G(O).

It is productive to first consider GrG := G(K)/G(O), called the affine Grassmannian. It is
an ind-variety — infinite-dimensional, but a nested union of projective varieties of increasing
dimension. We see therefore that G-bundles on X correspond to orbits of G(R) on GrG.

Remark. The name “affine Grassmannian” is because both the affine Grassmannian and
the ordinary Grassmannian are quotients of a Kac–Moody group by a maximal parabolic
subgroup.

We can generalize this construction by removing multiple points from X instead of just
one. Namely, let S ⊂ X be a non-empty finite subset, and take the two charts U1 := X \ S
and U2 :=

⊔
x∈S Dx where Dx is a formal disk around the point x. Then

U1 ∩ U2 =
⊔
x∈S

D×x ,

and therefore, by the same reasoning as above,

BunG(X)(k) = G(X \ S)
∖∏
s∈S

G(Kx)
/ ∏
x∈S

G(Ox), (1)

where, like before, Ox and Kx denote the rings of regular functions on Dx and D×x respectively.
Recall that for non-semisimple groups G, e.g. GL1 = Gm, there is no finite set S such

that all G-bundles are trivialized on X \ S. So, to generalize the above construction to such
groups, we will remove all rational points. This sounds like then there will be nothing left,
but in fact this is not so; the “Grothendieck generic point” still remains! Indeed, removing
a single point in algebraic geometry means to consider rational functions which are allowed
to have a pole at that point. So, removing all points means to consider rational functions
which are allowed to have poles anywhere, i.e. simply all rational functions. We obtain the
presentation

BunG(X)(k) = G(k(X))
∖∏′

x∈X
G(Kx)

/ ∏
x∈X

G(Ox). (2)

The prime on the product is a technical detail. It denotes the restricted product consisting
of elements with only finitely many coordinates having poles, i.e. not lying in G(Ox). The
restricted product arises because we are taking a colimit of (1) over finite sets S in order to
obtain (2).

Finally, if k is not algebraically closed, we can do the same construction using finite subsets
S ⊂ X(k̄) which are Galois-invariant. Here k̄ ⊃ k is the algebraic closure. Let Γ := Gal(k̄/k).
Then

BunG(X)(k) = G(k(X))
∖ ∏′

x∈X(k̄)/Γ

G(Kx)
/ ∏
x∈X(k̄)/Γ

G(Ox)

For example, if k is finite, all completions Fv of F = k(X) with respect to valuations v are
locally compact topological fields. Such F are called global fields. We get

BunG(X)(k) = G(F )
∖
G

( ∏′

v∈Val(F )
Fv

)/
G

( ∏
v∈Val(F )

Ov
)
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where Val(F ) is the set of valuations of F . This is called an arithmetic quotient. Note that this
realization of BunG(X)(k) now holds for any reductive group G, not necessarily semisimple.

For motivation, similar quotients arise in number theory. While global fields of character-
istic p have the form k(X), in characteristic 0 they are number fields, i.e. finite extensions of
Q.

Definition. If F is a global field, the ring of adèles is

A := AF :=
∏′

v∈Val(F )
Fv.

Over a number field F , there are two kinds of valuations: Archimedean (embed into C and
take absolute value) and non-Archimedean ones (p-adic valuations). Rings of integers Ov ⊂ Fv
make sense for non-Archimedean valuations. Let

OA :=
∏

v∈Valn.a.(F )
Ov

where Valn.a.(F ) is the set of non-Archimedean valuations. Then we can consider

M := G(F )\G(A)/G(O).

This generalizes BunG(X), because if F = k(X), then M = BunG(X)(k).

Example. Let F = Q. Then there are valuations of F with respect to all prime integers, and
also the usual ∞ valuation. Then

A = R×
∏′

p prime
Qp

OA =
∏

p primes
Zp,

and
M = G(Q)

∖(
G(R)×

∏′

p

G(Qp)
)/

G(Zp) = G(Z)\G(R).

For instance, if G = Sp2n, thenM = Sp(2n,Z)\Sp(2n,R), and taking a quotient by U(n) on
the right gives the moduli space of n-dimensional abelian varieties

An = Sp(2n,Z)\ Sp(2n,R)/U(n).

In particular, if G = SL2 = Sp2, then

A1 = SL2(Z)\ SL2(R)/U(1)

is the moduli space of elliptic curves. Modular forms live on this SL2(R)/U(1). For another
example, if G = GL1 and k is any field, then

Jac(X)(k) = k(X)×\A×/O×A .

The quotient A×/O×A , modulo k×, is the group of divisors on X. (Here, C× is the intersection
k(X)× ∩ O×A .)
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1.3 Stable bundles and Higgs fields

Hitchin systems are integrable systems, and integrable systems live on symplectic manifolds.
To create a symplectic manifold in our setting, we want to define the cotangent bundle
T ∗BunG(X). But, as explained, BunG(X) is not a manifold, or even a scheme. It is a
stack, however, and the cotangent bundle of a stack is well-defined as another stack. We will
avoid this, however, and work only with a particular open set in T ∗BunG(X).

Assume g ≥ 2 and first assume that G is simple and of adjoint type (i.e. the center of G
is trivial). A “generic” bundle in BunG(X) has trivial automorphism group, so in the local
presentation of BunG(X) as a quotient of an algebraic variety by a group, the group acts
freely at such a bundle. The locus of “generic” bundles therefore forms a smooth algebraic
variety Bun◦G(X).

There are many ways to specify what “generic” means. We will use a stability condition.
Let G = GLn. Then G-bundles are rank-n vector bundles. If E 6= 0 is a vector bundle on X,
there are two integers attached to it: the degree d(E) (given by the first Chern class), and
the rank r(E).

Definition. The slope of E is
µ(E) := d(E)/r(E).

We say E is stable if for every sub-bundle 0 6= E′ ( E,

µ(E′) < µ(E).

There is a more technical definition for other reductive groups G, which we will not state.

Exercise. If L is a line bundle, and E is a vector bundle, then E is stable if and only if E⊗L
is stable.

This exercise shows that stability, as we defined it above, is also well-defined for PGLn-
bundles, which are equivalently rank-n vector bundles modulo tensor product with line bun-
dles.

Theorem. Stable bundles have the trivial group of automorphisms, and form a smooth variety
which is an open subset Bun◦G(X) ⊂ BunG(X).

Let M◦G(X) := T ∗Bun◦G(X). The Hitchin system will initially live on M◦G(X), but
actually there is a partial compactification MG(X) of M◦G(X) called the Hitchin moduli
space, which is still symplectic, to which the Hitchin system naturally extends. This sort of
extension to a partial compactification is a natural phenomenon in integrable systems.

For general semisimple G, not necessarily of adjoint type, there is a straightforward ex-
tension of this story. A bundle is “generic” if it is regularly stable, meaning that it is stable
and its group of automorphisms reduces to the center Z(G) (which is the smallest it can be).
The resulting Bun◦G(X) is still a stack with stabilizer Z(G) at every point, but because this
stabilizer is the same everywhere, we can rigidify like we did for the Jacobian. In other words,
we may ignore the stackiness and just consider the underlying variety.

Before we do anything, we should compute dim Bun◦G(X), or, equivalently since it is a
smooth variety, the dimension dimTE Bun◦G(X) of the tangent space at a point E ∈ Bun◦G(X).
This tangent space is just the deformation space of the bundle E.
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Exercise. Deformations of the bundle E are classified by H1(X, adE), where adE is the
adjoint bundle of E. This is the vector bundle associated to E given by the adjoint represen-
tation.

Example. Let G = GLn. Deformations of a vector bundle E are classified by Ext1(E,E);
this is unsurprising because, affine-locally, we are just deforming modules. Since

Ext1(E,E) = Ext1(O, E∗ ⊗ E) = H1(X, adE),

this agrees with our claim that deformations are classified by H1(X, adE).

Let g be the Lie algebra of G. The invariant pairing on g may be used to identify (adE)∗ ∼=
adE. Using this and Serre duality, it follows that

T ∗E Bun◦G(X) = H1(X, adE)∗ ∼= H0(X,KX ⊗ (adE)∗)
= H0(X,KX ⊗ adE)

Elements of H0(X,KX ⊗ adE) have a very vivid geometric interpretation: they are 1-forms
on X with coefficients in adE. From physics, they have the name Higgs fields on E.

It remains to compute dimH0(X,KX ⊗ adE). Let’s assume for simplicity that G is
simply-connected, in which case BunG(X) is irreducible. (The result extends to the non-
simply-connected case as well.) The Euler characteristic

χ(X,KX ⊗ adE) := dimH0(X,KX ⊗ adE)− dimH1(X,KX ⊗ adE)

is deformation-invariant, and dimH1(X,KX ⊗ adE) = dimH0(X, adE) = 0, where the first
equality is Serre duality and the second equality is because stable bundles have no (infinitesi-
mal) automorphisms.1 In particular, we may compute the Euler characteristic for the trivial
bundle E = OX :

χ(X,KX ⊗ g) =
(
dimH0(X,KX)− dimH1(X,KX)

)
· dimG

= (g − 1) · dimG.

Since BunG(X) is connected, any bundle can be connected to the trivial bundle by a path.
For generic bundles E, we have therefore computed that

dimH0(X,KX ⊗ adE) = (g − 1) · dimG.

For G = Gm, we know BunG(X) = Jac(X) has dimension g. So for general reductive G,

dim Bun◦G(X) = (g − 1) dim g + dimZ(g).

Example. For G = GLn, the dimension is (g − 1)n2 + 1.
1This is where we use that G is semisimple, because otherwise generic G-bundles still have automorphisms,

and so dim H1 will not vanish in the Euler characteristic.
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1.4 The Hitchin integrable system

We are ready to define the Hitchin integrable system. LetG = SLn. In this case, dim Bun◦G(X) =
(n2 − 1)(g − 1), and elements in Bun◦G(X) are pairs (E, φ) where E is a stable bundle and
φ ∈ Ω1(X,EndE) (with trace zero) is a Higgs field.

Definition. The Hitchin map is

p : T ∗Bun◦G(X)→
n−1⊕
i=1

H0(X,K⊗(i+1)
X ) =: B

(E, φ) 7→ (tr∧2φ, tr∧3φ, . . . , tr∧nφ).

The target is called the Hitchin base. By Riemann–Roch, dimH0(X,K⊗(i+1)
X ) = (2i+1)(g−1),

and so the dimension of the Hitchin base is
n−1∑
i=1

(2i+ 1)(g − 1) = (n2 − 1)(g − 1) = dim Bun◦G(X).

Theorem (Hitchin). p is an integrable system, i.e. coordinates (given by choosing a basis of
the Hitchin base) are Poisson-commuting and functionally independent.

2 Problem session 2

Problem 1. Let L be a non-trivial line bundle of degree 0 on an elliptic curve E over C.
Show that

1. L|E\0 is non-trivial as an algebraic bundle, but

2. L|E\0 is trivial as an analytic bundle.

So GAGA fails for the (non-projective) curve E \ 0.

Solution. 1. If L|E\0 were the trivial line bundle, then it has a nowhere-vanishing global
section s. Since transition maps for L are meromorphic, s extends to a meromorphic section
of L with poles allowed only at 0 ∈ E. This is impossible since L is a non-trivial line bundle
of degree 0, and in particular has no global sections.

2. Let θ(z) be the theta function of E, and ζ(z) := θ′(z)/θ(z). These functions are periodic
with period 1 and

θ(z + τ) = Ce2πizθ(z)
for some constant C. Thus ζ(z + τ) = ζ(z)− 2πi. Hence the Lame–Hermite function

H(z) := eaζ(z)
θ(z − a)
θ(z)

is doubly-periodic, i.e. is a holomorphic function on E \ 0. It has a simple zero at a and no
other zeros and poles, but it has an essential singularity at 0. Thus H may be viewed as a
non-vanishing holomorphic section of the analytic line bundle O(a)∨ over E \ 0. Hence O(a)
is trivial on E \ 0. But the given line bundle L is of the form L = O(a) ⊗ O(0)∨ for some
0 6= a ∈ E, so we are done.
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Problem 2. Show that any GLn-bundle E on a smooth projective curve X admits a B-
structure, i.e. is associated to a (non-unique) B-bundle. Here B ⊂ GLn is the subgroup of
upper-triangular matrices.

Solution. Recall that GLn-bundles E are equivalently vector bundles. A B-structure on the
vector bundle E is equivalently a filtration by sub-bundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that Ei+1/Ei are line bundles. We construct such a filtration by induction on the rank
n. Let L be an ample line bundle on X. Then

H0(X,E ⊗ L⊗N ) 6= 0, ∀N � 0.

Let s be a non-zero section, equivalently a non-zero morphism L⊗−N → E. If s vanishes at
points p1, . . . , ps to orders r1, . . . , rs, then we get a non-vanishing map L′ ↪→ E where

L′ := L⊗−N ⊗O(
s∑
i=1

ripi).

(Alternatively, assuming n > 1 = dimX, a sufficiently generic section s is already nowhere
vanishing.) Complete this inclusion into a short exact sequence

0→ L′ → E → E′ → 0.

Since rankE′ < rankE, by the induction hypothesis, E′ has a filtration by sub-bundles

0 = E′0 ⊂ E′1 ⊂ · · ·E′n−1 = E′.

Adding L′ to this filtration, we obtain the desired filtration of E.

Problem 3. Suppose G is connected and reductive. Show, using Čech 1-cocycles, that the
tangent space to Bun◦G(X) at E is H1(X, adE).

Solution. Pick a finite cover X =
⋃
i∈I Ui such that the principal G-bundle E is trivialized on

each Ui. (We may take a Zariski cover by the hypothesis on G.) Recall that E is determined
by transition functions, which are regular functions

gij : Ui ∩ Uj → G,

satisfying gij◦gji = id and the 1-cocycle condition gij◦gjk◦gki = id. Therefore, an infinitesimal
deformation of E is given by the modification

gij 7→ g̃ij := gij · (1 + exp(εξij))

where ε2 = 0, for a choice of regular function ξij : Ui∩Uj → g for each i, j ∈ I. Here g denotes
the adjoint representation of G. The conditions that {g̃ij}i,j∈I is still a set of valid transition
functions, namely that g̃ij ◦ g̃ji = id and g̃ij ◦ g̃jk ◦ g̃ki = id, hold if and only if

gijξijg
−1
ij = −ξji,

gijξijg
−1
ij + gikξjkg

−1
ik + ξki = 0.
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These equations exactly express that the element

(ξij)i,j∈I ∈
⊕
i,j∈I

H0(Ui ∩ Uj , adE)

lies in the kernel of the Čech differential. Similarly, recall that two sets {gij}i,j∈I and {g′ij}i,j∈I
of transition functions are equivalent if and only if there exist regular functions {hi : Ui →
G}i∈I such that g′ij = higijh

−1
j . A similar reasoning shows that the deformed transition

functions defined by two different (ξij)i,j∈I and (ξ′ij)i,j∈I are equivalent if and only if they
differ by the image, under the Čech differential, of an element

(ξi)i∈I ∈
⊕
i∈I

H0(Ui, adE).

Putting it all together, TE Bun◦G(X) is the cohomology at the middle term of the Čech complex⊕
i∈I

H0(Ui, adE)→
⊕
i,j∈I

H0(Ui ∩ Uj , adE)→
⊕
i,j,k∈I

H0(Ui ∩ Uj ∩ Uk, adE),

which is H1(X, adE) by definition.
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