
. PROBLEMS FOR THE 2024 SUMMER SCHOOL

1. Grassmannians and Chern classes.

1.1. Check that the elementary symmetric function ek(x1, x2, . . . ) is the unique sym-
metric function of degree k such that

ek(x1, . . . , xk, 0, 0, 0, . . . ) = x1x2 · · · xk .

1.2. Let c(V, t) = ∑k≥0 tkck(V) denote the Chern polynomial of a vector bundle V.
Prove that for any subbundle V′ ⊂ V we have

c(V, t) = c(V′, t) c(V/V′, t) .

1.3. Compute the Chern classes of the tangent bundle to Pn. Here and below all projec-
tive spaces, Grassmannian, flag varieties etc. denote the corresponding complex mani-
folds.

1.4. Let M ⊂ Pn be a smooth (complex, as always) hypersurface of degree d. Consider
the exact sequence of the vector bundles

0 → TM → TPn
∣∣∣

M
→ NPn/M → 0

on M, where NPn/M is the normal bundle. Check that

NPn/M = OPn(d)|M
and conclude a formula for the Chern classes of M. In particular, when is c1(M) = 0 ?
What is the topological Euler characteristic1 of M ? What is the genus of the curve M
when n = 2 ? Compute

∫
M c1(M)n−1 .

1.5. Consider the Grassmannian X = Gr(k, n). Its points correspond to linear sub-
spaces V ⊂ Cn of dimension k. Consider the set of pairs

(.1) {(V, v), such that v ∈ V} ⊂ Gr(k, n)×Cn .

Check that the LHS in (.1) is a vector bundle of rank k over X, called the tautological
subbundle of the trivial bundle in the RHS of (.1). By a slight abuse of notation, we
denote this tautological bundle by V. Check that

TX = V∗ ⊗ (Cn/V) ,

where V∗ denotes the dual bundle and Cn/V is the tautological quotient bundle. Express
c1(TX) and c2(TX) of the tangent bundle TX in terms of the Chern classes of V. If you
are familiar with the language of symmetric functions, propose a formula for ck(TX).

1By the Lefschetz hyperplane section theorem, this is equivalent to knowing the dimension of
Hmiddle(M)

1
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1.6. Consider the product X × X, where X = Gr(k, n) as in Problem 1.5. On X × X we
have two tautological bundles V1 and V2 pulled back from the two factors. Consider the
composed map

V1 → Cn → Cn/V2 .
Show this section of (Cn/V2) ⊗ V∗

1 vanishes precisely over the diagonal in X × X, in
other words, the top Chern class of (Cn/V2)⊗ V∗

1 is the class

∆ ∈ H2 dim X(X × X)

of the diagonal. Consider the operation

Φ∆ : γ 7→ p1,∗(∆ ∪ p∗2(γ))

from H•(X) to H•(X), where p1 and p2 are the projections of X × X to the respective fac-
tors. Show thatΦ∆ is the identity map. Conclude that the cohomology of X is generated
by the Chern classes of V.

What is the K-theory analog of these statements ?

1.7. The group GL(n) acts on X = Gr(k, n) via its defining action on Cn. Describe the
orbits of the subgroup U ⊂ GL(n) formed by lower-triangular matrices with 1s on the
diagonal. Show that each orbit contains a unique fixed point for the subgroup

A = diag(a1, . . . , an)

to which all other points are attracted when a1/a2, a2/a3, · · · → ∞ . The orbits are called
the Schubert cells and their closures are called Schubert varieties Sλ. They are naturally
indexed by partitions λ that fit into k × (n − k) rectangle. Show they form a basis in
integral homology or cohomology of X.

1.8. Show that Schubert cycles S∨
λ for the subgroup Uopp of upper-triangular matrices

form a basis dual to the basis of Schuber cycles. Translate the equality

ctop(V∗
1 ⊗ (Cn/V2)) = ∑

λ

[Sλ]⊠ [S∨
λ ] ∈ H•

(X × X)

into an identity of symmetric functions.

1.9. Compute the Poincaré polynomial of Gr(k, n) and compare it with number of points
of Gr(k, n) over a finite field with q elements.

1.10. For X = Pn−1 = Gr(1, n), Schubert classes Sl, l = 0, . . . , n − 1, form a chain

Pn−1 ⊃ Pn−2 ⊃ · · · ⊃ Pn−1−l ⊃ . . .

cut out by the equations x1 = · · · = xl = 0. Here xi are the homogeneous coordinates,
or more precisely the components of the natural map

(Cn)∗ ⊗OX → O(1)X .
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In particular, each individual coordinate xi is a A-equivariant map

OX ⊗ a−1
i

xi−−−−→ O(1)X ,

and so its zero locus represents the class ξ +αi, where ξ = c1(O(1)) and αi ∈ H2
A(pt)

corresponds to the character ai. Therefore

(.2) [Sl] =
l

∏
i=1

(ξ +αi) ∈ H•
A(X) .

1.11. Verify that the polynomial (.2) is characterized by the following Newton interpo-
lation properties:

• it has degree l in the variables ξ and αi, corresponding to the fact that [Sl] ∈
H2l(Gr) ,

• its restriction to A-fixed points not in Sl vanishes ,
• its restriction to the A-fixed point in the Schubert cell equals the Euler class of the

normal bundle to the Schubert cell.

Generalize this reasoning to compute the classes of the Schubert cells in the Gr(k, n).
Your answer should look like a Schur function in the Chern roots ξ1, . . . ,ξk of the uni-
versal bundle, in which the monomials ξ l

j are replaced by univariate interpolation poly-
nomials of the form (.2). Those unfamiliar with Schur functions will discover them for
themselves by solving Problem 1.13

1.12. Generalize the results of Problems 1.10 and 1.11 to equivariant K-theory.

1.13. Let G be the group GL(n,C), B ⊂ G be the subgroup of the upper-triangular
matrices and χ : B → C× a character. Consider holomorphic, or meromophic, functions
f (g) of g ∈ G which satisfy

f (gb) = f (g)χ(b) , ∀b ∈ B .

Interpret them as sections of a holomorphic line bundle Lχ on flag manifold

Flagsn = G/B = U(n)/diagonal matrices .

Compute the Euler characteristic χ(Lχ) by equivariant localization. Compare your re-
sult with the Weyl character formula for G and explain2 this comparison using the Peter-
Weyl decomposition

C[G] =
⊕

irreps V
V∗ ⊠ V , as G × G-modules .

2For a simple proof of fact that at most one cohomology group of Lχ is nonvanishing see [?Demazure]
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1.14. Let L be a complex line bundle with a connection ∇ and corresponding curvature
F ∈ Ω2(X,C). Show that, nonequivariantly, the form i

2π F represents c1(L). For an
equivariant generalization, see Chapter 7 in [?Berline-Getzler-Vergne].

For a rank r vector bundle V, the curvature form is matrix-valued, that is, F ∈ Ω2(X, End V).
Show that

∑
k

tkck(V) = det
(

1 +
it

2π
F
)

,

nonequivariantly.

2. Elliptic functions and elliptic curves.

2.1. Consider holomorphic functions f (z) of z ∈ C× solving the q-difference equation

(.3) f (qz) = cz−d f (z) ,

where q is a fixed complex number such that |q| < 1. Compute the dimension of the
space of solutions as a function of d (and c, for d = 0) in two ways: first by analyzing
the Laurent series expansion of f , and then by using the Riemann-Roch formula for the
complex elliptic curve E = C×/qZ .

2.2. Consider the function3

θ(z) = ∏
n>0

(1 − qnz) ∏
n≥0

(1 − qnz−1)

and check that is solves the equation

θ(qz) = −q−1z−1θ(z) .

Prove that a general solution of (.3) has the form

f (z) = const
d

∏
i=1
θ(z/wi) , ∏ wi = (−q)dc .

Interpret this result as saying that two divisors
d

∑
i=1

wi,
d

∑
i=1

w′
i ∈ SdE

3In many, many contexts, it is more convenient to use a different normalization of the theta function,
namely

ϑ(z) = z1/2θ(z) = (z1/2 − z−1/2) ∏
n>0

(1 − qnz)(1 − qnz−1) .

It has a series expansion in half-integer powers of z, that is, satisfies ϑ(e2π iz) = −ϑ(z). It is still the unique,
up to multiple, section of the line bundle O(e), where e = 1 ∈ E = C×/qZ is the identity, just for a different
trivialization of the pullback of this line bundle to C×. The extra convenience of using ϑ(z) is due to its
anti-symmetry ϑ(z−1) = −ϑ(z) .
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are linearly equivalent if and only if ∏ wi = ∏ w′
i in E, that is, modulo qZ. In other

words, the natural map
SdE → Picd E ∼= E

is from divisors to line bundles of the same degree is given by the multiplication in the
group E. Its fibers are projective spaces for d > 0.

2.3. Let f (z) be a meromorphic function on E, equivalently a rational function on the
algebraic variety E. Show that is has the form

f (z) = const
d

∏
i=1

θ(z/ai)

θ(z/bi)

for some values of ai and b j, where ∏ ai = ∏ bi in E, that is, modulo qZ.

2.4. By cutting partitions λ along the diagonal, prove that

∑
λ

qλ = coefficient of z0 in ∏
n>0

(1 + qn−1/2z)(1 + qn−1/2z−1) .

Deduce that

∑
n∈Z

qn2/2zn = ∏
n>0

(1 − qn)(1 + qn−1/2z)(1 + qn−1/2z−1) ,

which is one of the equivalent forms of the Jacobi triple product identity, and of the
Macdonald identity for the Lie algebra sl(2). Note this means

∑
n∈Z

(−1)nq(
n+1

2 )zn = θ(z) ∏
n>0

(1 − qn)

and compare the rate of convergence of two sides.

2.5. Let Γ ⊂ C be a lattice and x ∈ C be a complex number. Form the following product

σ(x) = x ∏
0 6=γ∈Γ

(
1 − x

γ

)
exp

(
x
γ
+

x2

2γ2

)
,

known as the Weierstrass σ-funciton, and show that it represents an odd entire function
of x. Consider a vector γ ∈ Γ \ 2Γ , which means

σ(γ/2) = −σ(γ/2) 6= 0 .

For such vector γ, prove that

σ(x + γ)

σ(x)
= − exp(ηγ(x + γ/2))

for some constant ηγ ∈ C. Express the functionσ(x) in terms of the theta function of the
elliptic curve E = C/Γ .
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2.6. Given a lattice Γ as in Problem 2.5, its holomorphic Eisenstein series are defined by

Eisenstein(Γ , n) = ∑
0 6=γ∈Γ

γ−n ,

which converges for n > 2 and vanishes for n odd. Relate these series to lnσ(x) and
express them in terms of the parameter q in the isomorphism E = C/Γ ∼= C×/qZ .

2.7. The theorem of the cube refers to various generalizations of the following basic state-
ment. Let X and Y be complete algebraic varieties over a field k, and let Z be an arbi-
trary variety over k. Let x ∈ X, y ∈ Y, z ∈ Z be k-points. Let L be a line bundle over
X ×Y × X. If L is trivial when restricted to {x}×Y × Z, X ×{y}× Z, and X ×Y ×{z},
then L is trivial. Find or read 4 a proof of this or any related statement. In the example
X = Y = E, check that the corresponding statement for two factors is false.

2.8. Let A be an abelian variety, which for our purposes we will always assume to be
of the form A = En. Let Pic(A) denote the Picard group of line bundles on A and
let Pic0(A) be the subgroup of line bundles that are algebraically equivalent to zero 5

Consider the map
ϕ : Pic(A)× A → Pic0(A)

that takes
(L, a) 7→ (translation by a)∗L ⊗L−1 .

Prove this is a group homomorphism, which is one of the forms of the theorem of the
square.

2.9. Let L ∈ Pic(A) be homogeneous, that is,ϕ(L, a) = 0 for all a ∈ A. Let

p1, p2, m : A2 → A

be the two projections and the multiplication map. Prove that

p∗1L ⊗ p∗2L = m∗L ,

and conclude
H•

(L)⊗ H•
(L) = H•

(L)⊗ H•
(OA) .

4there are many sources for reading about this result, which goes back to A. Weil, with a classical ex-
position by Mumford. Among online resources, https://www.math.ru.nl/personal/bmoonen/BookAV/
LineBund.pdf may be recommended.

5Two line bundles L1 and L2 are algebraically equivalent L1 ∼ L2 if there is a line bundle L̃ on A× B,
where B connected, such that

L|A×{b1} = L1 , L|A×{b2} = L2 ,

for some b1, b2 ∈ B. You should check that this is an equivalence relation and

L1 ∼ L′
1,L2 ∼ L′

2 ⇒ L1 ⊗L2 ∼ L′
1 ⊗L′

2 .

https://www.math.ru.nl/personal/bmoonen/BookAV/LineBund.pdf
https://www.math.ru.nl/personal/bmoonen/BookAV/LineBund.pdf
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Since dim H0(OA) = 1, it follows that

dim H0(L) ∈ {0, 1} .

Show that in first case Hi(L) = 0 for all i, while in the second case L is trivial.

2.10. Show that any L ∈ Pic0(A) is homogeneous. We will see a converse to this
statement below in Problem 2.14

2.11. For an elliptic curve E, check the exact sequence

0 → Pic0(E) → Pic(E)
deg−−−−−→ Z → 0

and identify Pic1(E), and hence Pic0(E) with E itself.

Prove that for any B and any line bundle L̃ on E × B whose restrictions to the E-fibers
has degree 0 and whose restriction to 0 × B is trivial, there is a map f : B → E such that

L = (id × f )∗P

where P is the following line bundle on

P = O(diag E − E × {0} − {0} × E)

on E × E. This realizes E as the dual abelian variety E∨ = E, and P as the Poincaré line
bundle on E × E∨.

2.12. For an abelian variety of the form A = En prove that

A∨ ∼= A ,

and construct the Poincare line bundle.

2.13. For elliptic curve E, define the Fourier-Mukai transform

Φ : Db Coh E → Db Coh E

by the equality
F 7→ p1,∗ (P⊗ p∗2(F))

where p1, p2 : E2 → E are the two projections and the pushforward p1,∗ is derived. Show
that

Φ2 = (pullback by a 7→ −a) [−1] ,

where [−1] denotes the cohomological shift of a complex by one step to the right. In
particular, Φ is an equivalence. Generalize to an abelian variety of the form A = En.
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2.14. Let L be a homogeneous line bundle on A = En which is not in Pic0(A). Using
the results of problem 2.9, show that Φ(L) = 0 and derive a contradiction. This proves
that

L ∈ Pic0(A) ⇔ ϕ(L, —) = 0 .
Prove the exact sequence

(.4) 0 → Pic0(A) → Pic(A)
ϕ(L,—)−−−−−−−−→ Homsymmetric(A, A∨) → 0 ,

where symmetric means ϕ : A → A∨ is equal to the pullback map ϕ∨ : Pic0(A∨) =
A → Pic0(A) = A∨.

2.15. The sequence (.4) is true for all abelian varieties, not just those of the form A = En,
but the proof is more involved. It shows that the mapϕ(L, —) is the correct multivariate
generalization of the degree.

What is the degree of the Poincaré bundle on E × E ? What is the degree of the line
bundle on A = En whose section s(z) is given by

s(z) = ∏θ(cµzµ)mµ

where zµ = ∏n
i=1 zµi

i , cµ ∈ C×, and mµ ∈ Z . When does such expression give a rational
function on A ?

3. Krichever’s proof of rigidity of the elliptic genus.

3.1. We begin with a discussion of how to read and interpret localization formulas. Let
V be an equivariant vector bundle on X. Define

Λ
•
tV = ∑

n
(−t)nΛnV , S•

t = ∑
n

tnSnV ,

where we interpret the second expression as an element of KG(X)[[t]]. Check that6

Λ
•
tV ⊗ S•

tV = 1 .

3.2. Let V ∈ K(X) be a vector bundle and assume that dimQ K(X) ⊗ Q is a finite-
dimensional vector space over Q. Prove that all eigenvalues of the operator of tensor
product by V in K(X) ⊗Q are equal to rk V. Moreover, these operators commute for
different bundles V1, V2. Conclude that all eigenvalues of the operator ⊗Λ•

tV are equal
to (1 − t)rk V , and hence this operator is invertible as a rational function in t with a pole
at t = 1. As t → 0, ∞, we have

(Λ
•
tV)−1 ∼ 1, t → 0, (Λ

•
tV)−1 ∼ t− rk VΛtopV∗, t → ∞ .

6you may want to interpret this equality in terms of the Koszul resolution of structure sheaf O0 of the
zero section of V∗
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What does this say about series of the form

χ(X,F ⊗ S•
tV) ∈ Z[[t]]

where F ∈ K(X) is arbitrary ?

3.3. What is the equivariant analog of the results in problem 3.2 ?

3.4. We abbreviate
ϕ(z) = ∏

n>0
(1 − qnz)

and define Krichever genus by

Ey(X) = χ

(
X,

θ(y ⊗ TX)

ϕ(TX)ϕ(T∗X)

)
y ∈ C× .

Here X is compact complex or, more generally, a stably almost complex manifold. As-
suming there is S1-action on X, write make the equivariant localization formula for
Ey(X) explicit. Determine the possible singularities of Ey(X) as a function on the com-
plexification C× of the group S1.

3.5. Consider the canonical bundle KX = ΛtopT∗X. Assume that KX admits, equiv-
ariantly, a root of order N and that yN = 1. (This includes the case when KX is trivial
and y is arbitrary.) These are the assumptions in the rigidity theorem for Ey(X). Show
that, with these assumptions, Ey(X) is invariant under t 7→ qt, that is, a function on
E = C×/qZ.

3.6. For any n = 1, 2, . . . , let µn ∈ S1 be the group of elements of order n, and let Xn be
the fixed locus of µn. Show that it is a smooth and (stably, almost) complex. Denote by
Nn the normal bundle of Xn in X. Check that

Ey(X) = χ

(
X(n),

θ(y ⊗ TXn)

ϕ(TXn)ϕ(T∗Xn)

θ(y ⊗ Nn)

θ(Nn)

)
.

Conclude that Ey(X) is regular at all points of order n in E and, hence, a constant.

. SOLUTIONS AND HINTS

1. Solution to 1.1. Consider the short exact sequence:

0 → ΩPn → OPn(−1)n+1 → OPn → 0(.1)

Take the dual of the short exact sequence and we have:

0 → OPn → OPn(1)n+1 → TPn → 0(.2)
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Denote c1(OX(1)) := H, via the exact sequence we have that:

ct(TPn) = (1 + H)n+1(.3)

2. Solution to 1.2. Since M is the zero locus of a homogeneous polynomial of degree d,
i.e. a global section of the line bundle O(d) over Pn. It defines an ideal sheaf FM of Pn,
this ideal sheaf is generated by the section s ∈ Γ(OPn(d)), thus defines a Cartier divisor
dH ⊂ Pn. In this way we have that FM

∼= O(−dH) and FM/F2
M

∼= O(−dH) ⊗ OM.
Taking the dual and we have that NPn/M

∼= OPn(d)|M.

In this way we have that the Chern class of M can be written as:

c(M) =
(1 + H)n+1

(1 + dH)
(.4)

So we have that c1(M) = (n + 1 − d)H, and when d = n + 1, c1(M) = 0. The Euler
characteristic of M is now:

(.5)
χ(M) =

∫
M

cn−1(M) =
∫
Pn

dx
n−1

∑
l=0

(
n + 1

l

)
(−1)n+1−ldn+1−lxn

=(n + 1)− 1
d
[1 + (−1)n(d − 1)n+1]

In case when M is a projective curve in P2, χ(M) = d(3 − d) = 2 − 2g, and we have that
g = (d − 1)(d − 2)/2.

3. Solution to 1.3. Obviously the fibre of the map is isomorphic to Ck. To see the local
triviality, given X ∈ Cn, we can choose an orthogonal projection p : Cn → V and we
consider the set U of all the k-dimensional spaces V′ such that p(V′) ∼= V. Obviously
the set U is open in Gr(k, n). Thus we can construct the mapφ : π−1(U) → U ×Ck via
(V′, v) 7→ (V′, p(v)), which is clearly an isomorphism.

We use two ways to compute the tangent bundle of Gr(k, n). Consider the short exact
sequence of vector bundles over Gr(k, n):

0 → V → Cn → Cn/V → 0(.6)

Consider the Plucker embedding Gr(k, n) ↪→ P(
∧k V) via V 7→ v1 ∧ · · · ∧ vk. Also note

that O(−1) is the tautological subbundle of
∧k Cn ×P(

∧k V), in this case we can see that
the restriction of O(1) is isomorphic to ∧k(V∗).
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Now choose a point v1 ∧ · · · ∧ vk and we consider a map ϕc : [−1, 1] → X as ϕc(t) =
(v1 + tϕ(v1)) ∧ · · · ∧ (vk + tϕ(vk)), we have that, withϕ : V → Cn:

ϕ′
c(0) =

k

∑
i=1

v1 ∧ · · · ∧ϕ(vi) ∧ · · · ∧ vk(.7)

Thus two curves ϕc,ψc have the same tangent vector iff their difference lies in the sub-
space V′ spanned by v1, · · · , vk, thus it defines a map V′ → Cn/V′, thus isomorphic to
Hom(V,Cn/V). Thus we have that:

TX = Hom(V,Cn/V) ∼= V∗ ⊗Cn/V(.8)

Here we compute the Chern class ct(TX) of the tangent bundle TX. First we write down:

ct(V∗) =
k

∏
i=1

(1 − txi), ct(Cn/V) =
n−k

∏
i=1

(1 + tyi) =
k

∏
i=1

1
(1 + txi)

= ∑
r≥0

(−1)rhrtr(.9)

In this case we have that:

ct(V∗ ⊗Cn/V) =
k

∏
i=1

n−k

∏
j=1

(1 − txi + ty j) = ∑
λ,µ

dλµsµ(−x)sλ̃′(y)(.10)

with µ ⊂ λ. Here λ = (λ1, · · · , λk) are the partitions such that λi ≤ n − k, λ̃′ = (k −
λ′n−k, · · · , k − λ′1), λ′ stands for the transpose of λ. sλ(y) is the Schur polynomial defined
as:

sλ(y) = det(eλ′i−i+ j(y))1≤i, j≤n−k = det(hλ′i−i+ j(−x))1≤i, j≤n−k = sλ′(−x)(.11)

The coefficients dλµ is defined as:

dλµ = det(
(
λi + n − i
µ j + n − j

)
)1≤i, j≤n(.12)

Thus for now we have:

ct(V∗ ⊗Cn/V) = ∑
λ,µ

t|λ|+|µ|dλµsµ(−x)sλ̃(−x)(.13)

Thus we have the formula:

cl(TX) = ∑
|λ|+|µ|=l,µ⊂λ

dλµsµ(−x)sλ̃(−x)(.14)
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4. Solution to 1.4. The section of the vector bundle Hom(V1,Cn/V2) with the restriction
to the diagonal is equivalent to Hom(V,Cn/V), which is obviously zero. If given the
point (V1, V2) ∈ X × X which is not in the diagonal, it is not zero.

To show that Φ∆ is an identity map, note that as a class in homology, p∗2(γ) = γ × [X1]
and p1,∗(∆ ∩ p∗2(γ)) = [p1(γ × γ)] = γ

In terms of the cohomology, this means that:

(.15) Φ∆(γ) = [X2] ∩ (p∗2(γ) ∪ ctop(TX))

ctop(TX) can be written as ∑λ sλ(−x)sλ̃(−x), which means that γ must be generated by
the Chern class ci(V1).

The result expression of γ is the linear combination of the Chern class of ck(V1), thus we
conclude that H∗(X) is generated by ck(V).

The K-theoretic analog of the statement is that K(X) is generated by [
∧∗ V].

5. Solution to 1.5. Note that the element in Gr(k, n) can be represented by a linear map
A : Ck → Cn which is injective and of full rank up to the conjugacy of GLk. In this
case the strictly-lower triangular matrices U ⊂ GLn acts as the row simplification for the
k × n matrix A. The simplest row form of the matrix A is of the following:

∗ ∗ · · · ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ · · · ∗
0 0 0 0 ∗ ∗ · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 ∗

(.16)

i.e. It is determined by the number (λ1, · · · , λk) such that 1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ n.
Choose a suitable diagonal matrix U ∈ GL(k), one can further assume that:

A =


0 0 1 ∗ · · · ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ · · · ∗
0 0 0 0 0 0 1 ∗ · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1 0 0

(.17)

Thus the U-orbit in Gr(k, n) is determined by the sequence of numbers (λ1, · · · , λk) ∈ Nk

such that 1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ n. We define the new set of numbers λ′i = |λi − i|,
they define a partition λ, and we say thet the matrix A is of the form of the partition λ.
The corresponding orbit is denoted by Ω0

λ, which is an affine space Ck(n−k)−|λ|. Note



13

that this gives a stratification of Gr(k, n):

Gr(k, n) =
⊔
λ

Ω0
λ(.18)

For the fixed point fo the torus action:

g = diag(a1, · · · , an)(.19)

It is obvious that if A ∈ Ω0
λ, gA ∈ Ω0

λ. This means that there exists the subtorus t ∈ T ⊂
GL(k) such that:

At = gA(.20)

We can decompose the vector space Ck into the eigenspace with respect to the T-torus
action Ck = Ct1 ⊕ · · · ⊕Ctk and Cn into the A-torus action eigenspace Cn = Ca1 ⊕ · · · ⊕
Can. By computation it is easy to see that the equation reads:

∑
j

ti Ai jw j = ∑
j

Ai ja jw j(.21)

Since A is full rank, the above equation requires that a j = ti. But since (a1, · · · , an) is
generic, this requires that we can have only at most one ak such that ak = ti. Thus we
can choose (a1, · · · , an) such that ai = ti for 1 ≤ i ≤ k and A(Cti) ⊂ Cai. Since A is
full rank, this condition completely determines the matrix A up to GL(k) action. Easy
computation can show that each fixed point is in the corresponding Schubert cells Ωλ.

Now define Ωλ :=
⊔
µ≥λΩ

0
λ. This is the closed subvariety of Gr(k, n), and the chain

of the inclusion Ωλ1 ⊂ Ωλ2 ⊂ · · · ⊂ Gr(k, n) gives the CW decomposition for Gr(k, n),
[Ωλ] is a class in H2k(n−k)−2|λ|(Gr(k, n)) and thus generate the integral (co)homology of
Gr(k, n).

6. Solution to 1.6. We denote the dual Schubert variety as [Ω∨
λ ], thus we need to show

that:

[Gr(k, n)] ∩ [Ω∨
λ ] ∩ [Ωµ] = δλµ(.22)

If µ ≮ λ, we have that [Ω∨
λ ] ∩ [Ωµ] = 0. Or otherwise [Ω∨

λ ] ∩ [Ωµ] has dimension
|λ| − |µ|, which is the class of a Richardson variety. Thus it is left with the case µ = λ. In
this case Ω∨

λ ∩Ωµ = δµλTλ is equal to the torus fixed point.

By the formula of the Chern class:

ct(V∗
1 ⊗ (Cn/V2)) = ∑

λ,µ
t|λ|+|µ|dλµsµ(−x)sλ̃(−x)(.23)
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The top form in this case is written as:

ctop(V∗
1 ⊗ (Cn/V2)) = ∑

λ

sλ(−x)sλ̃(−x)(.24)

7. Solution to 1.7. The Poincaré polynomial for Gr(k, n) is computed as:

Pt(Gr(k, n)) =
k(n−k)

∑
l=0

t2lλn,k(l) =
(1 − t2n) · · · (1 − t2n−2k+2)

(1 − t2) · · · (1 − t2k)
(.25)

Here λn,k(l) stands for the number of partitions of l into ≤ n − k parts, each of size ≤ k.

For the number of Fq points on Gr(k, n). Note that we have an action of GLn(Fq) on
Gr(k, n)(Fq). This is a transitive action, and the stabiliser is given by the matrices A =
(ai j) ∈ GLn(Fq) such that ai j = 0 for k + 1 ≤ i ≤ n and 1 ≤ j ≤ k. Then the number of
elements in the stabliser is

#GLk(Fq) · #GLn−k(Fq) · #Mk,n−k(Fq)(.26)

The number of points in GLk(Fq) is given by:

#GLk(Fq) = q
k(k−1)

2 (qk − 1)(qk−1 − 1) · · · (q − 1)(.27)

Thus we conclude that:

(.28)
#Gr(k, n)(Fq) =

#GLn(Fq)

#GLk(Fq) · #GLn−k(Fq) · #Mk,n−k(Fq)

=
(qn − 1) · · · (qn−k+1)

(qk − 1) · · · (q − 1)

8. Solution to 1.8 1.9. Denote the character of the torus action T on Gr(k, n) asα1, · · · ,αn.
Denote the Schubert basis of Gr(k, n) as Ωλ, and the corresponding T-fixed point as pλ.

It is known that the Euler class of TGrk,n can be written as:

e(TpλGr(k, n)) = ∑
λ

sλ(−x)sλ̃(x) = ∏
i∈λ, j/∈λ

(αi −α j)(.29)

We have that:

[Ωλ]|pλ = e(TpλΩλ) = ∏
i∈λ, j/∈λ,i> j

(α j −αi)(.30)

Here we use λ = (i1 < · · · < id) ⊂ {1, · · · , n}. Sincw we know that Ωµ ⊂ Ωλ iff µ ⊃ λ,
we can conlcude that:

[Ωλ]|pµ = 0 unless µ ≥ λ(.31)
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This gives the Newton interpolation solution for the Schubert class [Ωλ]

We claim that this two condition gives a unique solution. Now suppose there are two
classes α, α′ satisfying the above condition. Let β = α −α′. Since we have known that
β|pµ = 0 unless µ ≥ λ. Let η ≥ λ be a minimal element such that β|pη 6= 0. Obviously
by the construction of β, η > λ. Now choose a T-equivariant curve C connecting pη and
other fixed points pβ such that β ≮ η, in this we can see that β|pη must be divisible by

∏
i∈η, j 6=η,i> j

(αi −α j)(.32)

which is equal to [Ωη]|pη . So β|pη has degree at least |η|. Since η > λ, we have |η| > |λ|,
which is a contradiction.

The corresponding fact is that the equivariant Schubert class [Ωλ] corrresponds to the
double Schur function sλ(x|α) defined as:

sλ(x|y) =
det[(xi|y)λ j+d− j]1≤i, j≤d

det[(xi|y)d− j]1≤i, j≤d
, (xi|y)p = (xi − y1) · · · (xi − yp)(.33)

The double Schur function satsify the condition .30 .31 above, thus it is the unique solu-
tion.

9. Solution to 1.10. Under the setting of the equivariant K-theory, denota ai the charac-
ter of the torus T. So we have that:

[Ωλ]|pµ = 0 unless µ ≥ λ(.34)

[Ωλ]|pλ = ∏
i∈λ, j/∈λ,i> j

(1 − ai

a j
)(.35)

The uniqueness comes from the similar reason, but we replace the degree condition by
the Newton polytope condition. The corresponding symmetric function is still the dou-
ble Schur polynomial, which is almost all the same instead:

(xi|y)p = (1 − y1x−1
i ) · · · (1 − ypx−1

i )(.36)

10. Solution to 1.11. Using the Huzbrecht-Riemann-Roch theorem:

(.37)

χ(Lλ) =
∫

G/B
ch(Lχ)Td(G/B) =

∫
G/B

eλ ∏
α∈Φ+

α

1 − e−α

= ∑
w∈W

1
e(Tw(G/B))

eλ ∏
α∈Φ+

α

1 − e−α

= ∑
w∈W

ewλ

∏α∈Φ+
(1 − e−w(α))

= ∑
w∈W

(−1)l(w)ew(λ+ρ)

∏α∈Φ+
(eα/2 − e−α/2)
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The Weyl character formula states that for the irreducible representation Lλ of the semisim-
ple Lie algebra, we have that:

chLλ(a) = trEnd(Lλ)(e
a) = ∑

w∈W

(−1)l(w)ew(λ+ρ)

∏α∈Φ+
(eα/2 − e−α/2)

(.38)

The interpretation of the coincidence of the formula can be seen as follows. The global
section of Lλ can be interpreted as the holomorphic function f (g) over G such that
f (gb) = f (g)λ(b), thus it is a subspace of C[G]. While the Peter-Weyl isomorphism:

C[G] =
⊕
λ

L∗
λ ⊠ Lλ(.39)

implies that the algebraic holomorphic function over G is generated by 〈v1, gv2〉 with
v1 ∈ L∗

λ, v2 ∈ Lλ. If we fix λ and the vacuum vector v1 ∈ L∗
λ, it is easy to see that

〈v1, gbv2〉 = λ(b)〈v1, gv2〉. Thus the function satisfying the above equivariant property
should lie in Lλ. Thus we have that Γ(Lλ) = Lλ.

11. Solution to 1.12. Given the vector bundle p : V → X, via the splitting principle,
there exists a manifold π : F(V) → X such that F(V) is a fibration over X with the fibre
over x ∈ X isomorphic to the full flag manifold of p−1(x), and the pullback of V over
F(V) is that

π∗(V) = L1 ⊕ · · · ⊕ Lr(.40)

Now using the identity Fπ∗∇ = π∗F∇, we have the decomposition π∗F = F1 ⊕ · · · ⊕ Fr

π∗det(1 +
it

2π
F) =

r

∏
i=1

(det(1 +
it

2π
Fi)) =

r

∏
i=1

(1 +
it

2π
Fi) =

r

∏
i=1

(1 + tc1(Li))(.41)

This means that π∗(∑k tkck(V)− [det(1 + it
2π F)] = 0 ∈ H∗(F(V),C). Now since the the

fibre of the map F(V) → X is flag manifold associated to the fibre of V over X. While
the flag manifold does not contain the odd cohomology classes, this means that the map
π∗ : H∗(X,C) → H∗(F(V),C) is injective on even degrees. Thus the proof is finished.

12. Solution to 2.1. First we analyze the Laurent series of f (z).

Write down the Laurent expansion of f (z) as:

f (z) = ∑
n∈Z

anzn(.42)

Taking the formula into the q-difference equation and we obtain that:

∑
n∈Z

anqnzn = ∑
n∈Z

canzn−d(.43)
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This requires that d ∈ Z and it gives us the recursion relations:

an+d = c−1qnan, an+kd = c−kqkn+ k(k−1)d
2 an(.44)

This means that the space of solutions has the dimension d as long as c 6= 0. The solution
can be written as:

∑
k∈Z

c−kq
k(k−1)d

2 +knzdk = ∑
k∈Z

(qd)
k2
2 (

zdqn−d/2

c
)k(.45)

It has the zeroes over −zdc−1 ∼ qZ.

For d < 0, one can check that the convergence radius is zero. So we always assume
d > 0.

The second method is that one could construct a line bundle over E = C×/qZ:

Lc,d := C× ×C/ ∼, (z, f (z)) ∼ (qz, cz−d f (z))(.46)

It can be seen that the line bundle has the corresponding divisor over the points [pi] such
that L = O([p1] + · · ·+ [pd]). Using the Riemann Roch:

dim(Γ(L)) = deg(D) = d(.47)

For d = 0, it is easy to see that the solution is 0 if c 6= 1. If c = 1, f (z) is a constant. Thus
the dimension of the solution space is 0 if c 6= 1 and 1 if c = 1. The corresponding line
bundle is the structure sheaf over the elliptic curve for c = 1. For c 6= 1, there exists the
meromorphic solutions, which means that the corresponding line bundle is not ample,
and thus has zero global sections.

13. Solution to 2.2.

(.48) θ(qz) = ∏
n>0

(1 − qn+1z) ∏
n≥0

(1 − qn−1z−1) =
1 − q−1z−1

1 − qz
θ(z) = −q−1z−1θ(z)

Consider another solution g(z) such that g(qz) = cz−dg(z). Since we have known that
the solution space has the elements containing only the simple zeros. We can assume
that g(z) has the same zeros as f (z) = ∏iθ(z/wi). In this case we have that g(z)/ f (z) is
a holomorphic function such that:

f (qz)
g(qz)

= Const · f (z)
g(z)

(.49)

Thus we have that f (z)/g(z) = Const · zn for some n.
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Geometrically speaking, consider the natural map SymdE → E, (w1, · · · , wd) 7→ ∏d
i=1 wi.

The equation ∏ wi = (−q)dc defines a divisor in SymdE. They correspond to the same
line bundle on E iff ∏ wi = ∏ w′

i.

14. Solution to 2.3. Note that given an ample line bundle L corresponding to the q-
difference equation P(qz) = cz−dP(z) has the solution of the form ∏iθ(z/ai) with ∏i ai =
(−q)dc. This gives a projective embedding E ↪→ Pd−1 via z 7→ (P1(z), · · · , Pd(z)) with
Pi(z) the function of the form ∏iθ(z/ai). Thus the rational function over E can be written
as:

∏iθ(z/ai)

∏iθ(z/bi)
, ∏

i
ai = ∏

i
bi(.50)

15. Solution to 2.4. Do the Laurent expansion of ∏n>0(1 + qn−1/2z)(1 + qn−1/2z−1):
(.51)
∏
n>0

(1 + qn−1/2z)(1 + qn−1/2z−1) = ( ∑
k1<···<kd ,d≥0

zdqk1+···+kd−d/2)( ∑
k1<···<kd ,d≥0

z−dqk1+···+kd−d/2)

we have that the coefficient of z0 is given as:

∑
1≤k1<···<kd ,d≥0

q(k1+···+kd)−d = ∑
0≤k1<···<kd ,d≥0

qk1+···+kd = ∑
λ

q|λ|(.52)

Define the function:

f (z) = ∏
n>0

(1 + qn−1/2z)(1 + qn−1/2z−1)(.53)

we have that:

f (qz) = ∏
n>0

(1 + qn+1/2z) ∏
n>0

(1 + qn−3/2z−1) =
1 + q−1/2z−1

1 + q1/2z
f (z) = q−1/2z−1 f (z)

(.54)

It is easy to see that the dimension of the solution space is 1, and the solution can be
written as const · ∑k∈Z qk2/2zk, thus we have that:

∑
k∈Z

qk2/2zk = F(q) ∏
n>0

(1 + qn−1/2z)(1 + qn−1/2z−1)(.55)

To determine F(q), it remains to compare the coefficients on both sides. Note that for the
coefficient of z0:

F(q)∑
λ

q|λ| = 1(.56)
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While we have that ∑λ q|λ| = ∏n>0
1

1−qn , in this way we have that:

F(q) = ∏
n>0

(1 − qn)(.57)

16. Solution to 2.5. Oddness is trivial. For the entireness, note that:

(.58)

|σ(x)| =| exp(log(x) + ∑
γ∈Γ ∗

log(1 − x
γ
) + ∑

γ∈Γ ∗

x2

2γ2 )|

≤ exp(| log(x)|+ ∑
γ∈Γ ∗

| log(1 − x
γ
)|+ | ∑

γ∈Γ ∗

x2

2γ2 |)

Since ∑γ∈Γ ∗ 1/γ2 is convergent, it remains to analyze ∑γ∈Γ ∗ | log(1 − x
γ )|. Note that:

(.59)

∑
γ∈Γ ∗

| log(1 − x
γ
)| = ∑

(m,n) 6=(0,0)
| log(1 − x

mω1 + nω2
)| ≤ ∑

k≥1

x2k

2k ∑
(m,n) 6=(0,0)

1
|mω1 + nω2|2k

While ∑(m,n) 6=(0,0)
1

|mω1+nω2|2k ≤ C
k2 , thus:

∑
γ∈Γ ∗

| log(1 − x
γ
)| ≤ C ∑

k≥1

x2k

k3(.60)

which is convergent for finite x, and thus σ(x) is an entire function over C.

Via computation:
(.61)

σ(x + γ) =(x + γ) ∏
γ′∈Γ ∗

(1 − x + γ

γ′
) exp(

x + γ

γ′
+

(x + γ)2

2γ′2
)

=γ(1 +
x
γ
) ∏
γ′∈Γ ∗

γ′ − γ
γ′

(1 − x
γ′ − γ ) exp(

x
γ′

+
x2

2γ′2
) exp(

γ

γ′
+
γ2

2γ′2
+

xγ
γ′2

)

=− x ∏
γ′∈Γ ∗

(1 − x
γ′
) exp(

x
γ′

+
x2

2γ′2
) ∏
γ′∈Γ ∗

exp(
γ

γ′
+
γ2

2γ′2
+

xγ
γ′2

)

=− ∏
γ′∈Γ ∗

γ′ − γ
γ′

exp(
γ

γ′
+
γ2

2γ′2
+

xγ
γ′2

)σ(x)

=− exp( ∑
γ′∈Γ ∗

log(γ′ − γ)− log(γ′) +
γ

γ′
+
γ2

2γ′2
+

xγ
γ′2

)σ(x)

=− exp(η(γ)(x +
γ

2
))σ(x), η(γ) := γ ∑

γ′∈Γ ∗

1
γ′2
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17. Solution to 2.6. For simplicity we write Γ = Z⊕Zτ , in this case we write down the
Eisenstein series as:

Eis(Γ , k) = ∑
(m,n) 6=(0,0)

1
(m + nτ)2k = ∑

n∈Z
ane2π inτ(.62)

First we give the following formula without proof:

πcot(πτ) =
1
τ
+ ∑

m∈Z,m 6=0
(

1
τ + m

− 1
m
)(.63)

We denote q = e2π iτ . The left hand side of the formula can be written as:

πcot(πτ) = −π i(1 + 2
∞
∑
r=1

qr)(.64)

Thus we have that:

−π i(1 + 2
∞
∑
r=1

qr) =
1
τ
+ ∑

m∈Z,m 6=0
(

1
τ + m

− 1
m
)(.65)

Differentiating with respect to τ we have that:

− ∑
m∈Z

1
(m + τ)2 = −(2π i)2

∞
∑
r=1

rqr(.66)

One can compute that:

∑
m∈Z

1
(m + nτ)2k =

(2π i)2k

(2k − 1)!

∞
∑
r=1

r2k−1qnr(.67)

For now we have:

(.68)

∑
(m,n) 6=(0,0)

1
(m + nτ)2k = ∑

m∈Z,m 6=0

1
m2k +

∞
∑

n=1
∑

m∈Z
(

1
(m + nτ)2k +

1
(m − nτ)2k )

=2ζ(2k) + 2
∞
∑

n=1
∑

m∈Z

1
(m + nτ)2k

=2ζ(2k) + 2 · (2π i)2k

(2k − 1)!

∞
∑

n=1

∞
∑
r=1

r2k−1qnr

=2ζ(2k) + (−1)k2 · (2π)2k

(2k − 1)!

∞
∑
r=1

r2k−1qr

1 − qr
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18. Solution to 2.7. Consider the line bundle over E × E with the global section written
as:

F(z, w) =
θ(zw)

θ(zw0)θ(z0w)
(.69)

It satisfies the q-difference equations:

F(qz, w) = w−1w0F(z, w), F(z, qw) = z−1z0F(z, w)(.70)

with z0, w0 some points in E. It is easy to see that the restriction to {z0} × E gives the
function F(z0, w), i.e. F(z0, qw) = F(z0, w) and F(qz, w0) = F(z, w0) when restricted to
E × {w0}. It is obvious that the restricted ones are trivial, while the original one is not
trivial.

19. Solution to 2.8. Note that

(.71)
ϕ((L1, a1)(L2, a2)) = τ(a1a2)

∗(L1 ⊗L2)⊗ (L1 ⊗L2)
−1

ϕ(L1, a1)ϕ(L2, a2) = τ(a1)
∗L1 ⊗L−1

1 ⊗ τ(a2)
∗L2 ⊗L−1

2

So we need to prove that τ(a1a2)
∗(L1 ⊗L2) is algebraic equivalent to τ(a1)

∗L1 ⊗τ(a2)
∗L2,

and this can be done by chosing a line bundle L over A × A2 such that L|A×(z1×z2)
∼=

τ(z1)
∗L1 ⊗τ(z2)

∗L2. Thus τ(a1a2)
∗(L1 ⊗L2) is the fibre over A× (a1, a2) and τ(a1)

∗L1 ⊗
τ(a2)

∗L2 is the fibre over A × (a1a2, a1a2).

20. Solution to 2.9. We have that m∗L ⊗ p∗1L
−1|A×{a}

∼= p∗2L|A×{a}
∼= O and m∗L ⊗

p∗1L
−1|{0}×A

∼= p∗2L{0}×A
∼= L. Then using the Seesaw principle, we have the isomor-

phism.

For the cohomology, note that:

Hk(A2, m∗L) = Hk(A2, p∗1L ⊗ p∗2L) ∼=
⊕

i+ j=k

Hi(A,L)⊗ H j(A,L)(.72)

Now we consider the map s : A → A2, x 7→ (x, 0), and we can see that m ◦ s = id. Also
(m ◦ s)∗ : Hk(A,L) → Hk(A,L) factors through Hk(A2, m∗L).

Now we set H0(L) = 0, and in the above settings, we suppose that i + j = k ≥ 1. We
further suppose that k is the smallest number such that Hk 6= 0. Thus we can see that it
is a contradiction, which gives Hk = 0.
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21. Solution to 2.10. Now given L ∈ Pic0(A), by definition there is a line bundle L̃

over A × B such that L̃|A×b1 = L, L̃|A×b2 = O.

Consider the line bundle L′ on A × A × B

L′ = (m ⊗ id)∗L̃ ⊗ p∗13L̃
−1 ⊗ p∗23L̃

−1(.73)

It is easy to see that L′ is trivial on A × 0 × B and 0 × A × B and A × A × b2. Then us-
ing the theorem of the cube, we can see that L′ is trivial. Its restriction to A × A ×
b1 is m∗L ⊗ p∗1L

−1 ⊗ p∗2L
−1. Now since m∗L ⊗ p∗1L

−1|A×a
∼= τ(a)∗L ⊗ L−1 ∼=

p∗2L
−1|A×a

∼= O, this implies that τ(a)∗L ∼= L.

22. Solution to 2.11. Since each line bundle corresponds to the divisor D = ∑i ni pi, the
degree map gives deg(D) = ∑i ni. For L ∈ Pic0(E), it has τ(a)∗L ∼= L, which means
that ∑i ni(pi + a) = ∑i ni pi, and it is equivalent to ∑i ni = 0, i.e. it is the kernel of deg.

Note that the property of the line bundle L̃ gives the natural map f : B → E by the fol-
lowing. Since L̃|E×b = Lb ∈ Pic0(E), using the isomorphism Pic0(E) ∼= E, we construct
a map f : B → E via b 7→ Lb.

On the other hand, for the line bundle P over E × E, it is easy to check that P|E×e =
O(e − o), and here e = ∑i ni pi and o = ∑i ni∞. In this way we can see that:

P|E× f (b)
∼= L̃|E×b(.74)

23. Solution to 2.12. For the case when A = En, a quick way to prove that A∨ ∼= A is to
note that for the corresponding lattice Λ of En, which is (Z⊕ τZ)⊕n, we have the group
isomorphism Hom(Λ, U(1)) → A∨ via χ 7→ L(χ) such that L(χ) corresponds to the
q-difference equations:

F(z + u) = χ(u)F(z), z ∈ C2n, u ∈ Λ(.75)

To endow with the complex structure, note that there is a natural injecive map Pic(E)×
· · ·×Pic(E) ↪→ Pic(En), this induce the injective map Pic0(E)×· · ·×Pic0(E) ↪→ Pic0(En).
Note that since Pic0(E) ∼= E as algebraic varieties, this is an injective map of algberaic
varieties En ↪→ Pic0(En), but we know that Pic0(En) ∼= En as groups, thus this injective
map is also an isomorphism.

To construct te Poincare bundle, note that the isomorphism implies that the degree 0 line
bundle L over En is determined by pr∗1L1 ⊗ · · · ⊗ pr∗nLn for Li ∈ E∨, this means that
for the Poincare bundle P such that:

P|En×(L1 ,··· ,Ln)
∼= pr∗1L1 ⊗ · · · ⊗ pr∗nLn(.76)

We can define P := pr∗1P1 ⊗ · · · ⊗pr∗nPn, and one can check that it satisfies the required
conditions.
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24. Solution to 2.13. For the Poincare bundle over E × E∨, its corresponding Hermitian
form can be written as:

H =


0 0 1 −i
0 0 −i −1
1 i 0 0
i −1 0 0

(.77)

this matrix has 1 positive eigenvalues and 1 negative values. By the general result in the
study of cohomology of line bundles of complex tori. We have that H0(P) = H2(P) =
0. Thus it remains to compute H1(P). Then by the analytic Riemann-Roch, we have
χ(P) = −Pf(Im(H)) = −1, which implies that H1 = C.

Now back to the computation of Φ2, by computation we can see that:

Φ2 = Rp12,∗(p∗13P⊗ p∗23P) ∼= Rp12,∗(m ⊗ 1)∗P ∼= m∗Rp1,∗P(.78)

Now using the Leray spectral sequence, it is known that Hi(P) = (Ri p1,∗P)0 and the
coherent sheaf Ri p1,∗P vanishes over E−{0}. Now we have Ri p1,∗P ∼= δi1C[−1], which
is supported on {0}. Hence we have that Φ2 is isomorphic to OE[−1], with E being the
off-diagonal subvariety (−x, x) ∈ E × E. Thus Φ2 = (−1E)

∗[−1].

For the general case En, note that since P = pr∗1PE ⊗ · · · ⊗ pr∗nPE, we have:

Hk(En × En,P) ∼=
⊕

i1+···+in=k

Hi1(PE)⊗ · · · ⊗ Hin(PE) =

{
C k = n
0 otherwise

(.79)

Thus similar calculation shows that:

Φ2 = (−1En)∗[−n](.80)

25. Solution to 2.14. By computation:

(.81)

Φ(L) =Rp1,∗(P⊗ p∗2(L))

=Rp1,∗(P⊗ p∗1(L
−1)⊗ m∗(L−1))

=Rp1,∗(P⊗ m∗(L−1))⊗L−1 ∼ RΓ(L−1) = 0

It remains to show that L 7→ ϕ(L,−) gives a surjective map from Pic(A) to Homsym(A, A∨).
Since we only deal with the case A = En, it is equivalent to show that every group
scheme mapϕ : En → En such that the induced mapϕ∗ : En → En is the same asϕ.

For the group scheme map ϕ : En → En, it is easy to see that it is equivalent to a linear
isomorphism ϕ : Cn → Cn which preserves the lattice ϕ(Λ) ⊂ Λ, and in our case it is
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equivalent to ϕ ∈ GLn(Z). Thus for now the induced map ϕ∗ : Pic0(En) → Pic0(En),
the induced line bundleϕ∗L has the automorphy form as:

ϕ∗χ = ϕ(χ)(.82)

This can be seen in the following way: Given the line bundle L ∈ Pic0(En) such that the
section F(z) satisfies the difference equation:

F(qei z) = χi(q)F(z)(.83)

While the section ofϕ∗L can be written as:

F(ϕ(z)) = F(za11
1 · · · za1n

n , · · · , zan1
1 · · · zann

n )(.84)

which means that:

F(ϕ(qei z)) = F(qa1i za11
1 · · · za1n

n , · · · , qani zan1
1 · · · zann

n ) = χ
a1i
1 · · · χani

n F(ϕ(z))(.85)

Thus as long asϕ : En → En is a group scheme map, the induced mapϕ∗ is the same as
ϕ.

Now given arbitrary L ∈ Pic(En), its section satisfies the difference equations:

F(qei z) = χi(z)F(z)(.86)

with χi(z) the monomials of z. Thus the sections of τ(a)∗L is given as F(a1z1, · · · , anzn),
with the automorphy given as χi(az). Thus the automorphy of τ(a)∗L ⊗L−1 is given
as:

χi(az)/χi(z) = ξi(a)(.87)

which is a monomial of a with coefficients being 1. The power of a lies in Zn, which
means that it also gives arbitrary matrix in GLn(Z). Thus it is obviously surjective.

26. Solution to 2.15. The global section of the Poincare bundle P on E × E has the au-
tomorphy as:

F(qz, w) = w−1F(z, w), F(z, qw) = z−1F(z, w)(.88)

Thus for the corresponding mapϕ(P, a) = τ(a)∗P⊗P−1, the resulting bundle τ(a)∗P⊗
P−1 has the global section with the automorphy:

F(qz, w) = a−1
2 F(z, w), F(z, qw) = a−1

1 F(z, w)(.89)

Thus we haveϕ(P, a1, a2) = (a−1
2 , a−1

1 ), and the corresponding matrix is given by:(
0 −1
−1 0

)
(.90)
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For the line bundle on En with the section of the form:

s(z) = ∏θ(cµzµ)mµ , zµ =
n

∏
i=1

zµi
i , cµ ∈ C×, mµ ∈ Z(.91)

This gives a linear map:

ϕ(ai) = ∏
µ

(aµ1
1 · · · aµn

n )−mµµi(.92)

whose corresponding lattice map is given by:

ϕ(ei) = −∑
µ

(mµµ1µi, · · · , mµµnµi)(.93)

27. Solution to 3.1. A possibly simple proof is that for the vector bundle V over X, we
construct the flag fibration π : F(V) → X over X such that π∗V = L1 ⊕ · · · ⊕ Ln, so we
have that:

π∗
∗∧
t

V =
n

∏
i=1

(1 − tLi), π∗S∗
t V =

n

∑
i=1

(1 − tLi)
−1(.94)

While since π∗ is injective on K0(X) → K0(F(V)), the problem is solved.

28. Solution to 3.2. We first enlarge the vector space K(X)⊗Q to K(X)⊗C. Now with
the tensor product, K(X)⊗C itself becomes a commutative finite-dimensional algebra
over C. Moreover, K(X)⊗C is also a K(X)⊗C-module. Since K(X)⊗C is commuta-
tive, all of its irreducible representation is 1-dimensional, thus we can decompose the
representation ρ = ρ1 ⊕ · · · ⊕ ρn. This means that V ⊗ Vi = λiVi, and now comparing
the rank rk(V ⊗ Vi) = rk(V)rk(Vi), this implies that λi = rk(V).

Easy computation shows that ∧∗
t V has eigenvalues as (1 − t)rk(V).

Given a proper map p : X → pt, using the Grothendieck-Riemann-Roch we have that:

(.95)

χ(X,F ⊗ S∗
t V) =ch(p!(F ⊗ S∗

t V)) = p∗(ch(F ⊗ S∗
t V)Td(X))

=p∗(ch(F)ch(S∗
t V)Td(X))

=p∗(ch(F)ch(
∗∧
t

V)−1Td(X))

=p∗(
ch(F)

∏t
i=1(1 − tLi)

Td(X)) =
∫

X

ch(F)

∏t
i=1(1 − tLi)

Td(X)
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29. Solution to 3.3. We assume that X has a Lie group G action such that XG =
⊔
α Fα.

By the equivariant localization we have that:

∫
X

ch(F)

ch(∧∗
t V)

Td(X) = ∑
α

∫
Fα

ch(F)

ch(∧∗
t V)e(NFα)

Td(X) = ∑
α

∫
Fα

ch(F)Td(NFα)

ch(∧∗
t V)e(NFα)

Td(Fα) = ∑
α

χ(Fα ,F ⊗ S∗
t V ⊗ S∗

t N∨
Fα)

(.96)

30. Solution to 3.4. If we write TX = L1 + · · ·+ Ln, i.e. T∗X = L−1
1 + · · ·+ L−1

n , we can
express Krichever genus as:

(.97)

p∗(Td(X)ch(
θ(y ⊗ TX)

ϕ(TX)ϕ(T∗X)
)) =

n

∏
i=1

p∗(
xi

1 − e−xi

θ(yxi)

ϕ(xi)ϕ(x−1
i )

)

=
n

∏
i=1

p∗(xi

∞
∏
k=1

(1 − qnyeyxi)(1 − qny−1e−xi)

(1 − qnexi)(1 − qne−xi)
)

Denote XS1
=

⊔
α Fα, using the equivariant localization we have that:

(.98)∫
X

n

∏
i=1

(xi

∞
∏
k=1

(1 − qnyeyxi)(1 − qny−1e−xi)

(1 − qnexi)(1 − qne−xi)
) = ∑

α

∫
Fα

eS1(TFα)
n

∏
i=1

(
∞
∏
k=1

(1 − qnyeyxi)(1 − qny−1e−xi)

(1 − qnexi)(1 − qne−xi)
)

=∑
α

∫
Fα

eS1(TFα)
n

∏
i=1

(
∞
∏
k=1

(1 − qnyzni)(1 − qny−1z−ni)

(1 − qnzni)(1 − qnz−ni)
)

=∑
α

∫
Fα

Td(Fα)ch(
θ(y ⊗ NFα)θ(y ⊗ TFα)
θ(NFα)θ(TFα)θ(T∗Fα)

) = ∑
α

χ(Fα ,
θ(y ⊗ NFα)θ(y ⊗ TFα)
θ(NFα)θ(TFα)θ(T∗Fα)

)

Thus the equivairant parametre z only occurs in the term θ(y ⊗ NFα)/θ(NFα). It has the
possible singularities over zki = qn with n ∈ Z.

31. Solution to 3.5.

(.99)
E(qz) =∑

α

χ(Fα ,
θ(yqNFα)

θ(qNFα)

θ(yTFα)
θ(TFα)θ(T∗Fα)

)

=∑
α

y−S1−weight of NFαχ(Fα ,
θ(yNFα)

θ(NFα)

θ(yTFα)
θ(TFα)θ(T∗Fα)

)

So if KX = L⊗N for some line bundle L, this means that:

S1-weight of NFα = S1-weight of TX|Fα = N(S1-weight of L)(.100)

with the fact that yN = 1, this gives that E(qz) = E(z).
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32. Solution to 3.6. Note that µn ⊂ S1 is a normal subgroup of S1, this means that
S1/µn ∼= S1, which is still a Lie group.

We first denote Xµn = tIXI as the fixed point component of X. For each XI there is a Lie
group S1/µn action. In this case we have:

χ(XI ,
θ(y ⊗ TXI)

ϕ(TXI)ϕ(T∗XI)
) = ∑

α∈I
χ(Fα ,

θ(y ⊗ NFα/FI
)θ(y ⊗ TFα)

θ(NFα/FI
)θ(TFα)θ(T∗Fα)

)(.101)

Now go back to the Krichever genus of X:

(.102)

χ(X,
θ(y ⊗ TX)

ϕ(TX)ϕ(T∗X)
) =∑

I
∑
α∈I

χ(Fα ,
θ(y ⊗ NFα/X)θ(y ⊗ TFα)
θ(NFα/X)θ(TFα)θ(T∗Fα)

)

=∑
I

∑
α∈I

χ(Fα ,
θ(y ⊗ NFα/FI

)θ(y ⊗ NFI/X)θ(y ⊗ TFα)
θ(NFα/FI

)θ(NFI/X)θ(TFα)θ(T∗Fα)
)

=∑
I
χ(XI ,

θ(y ⊗ TXI)θ(y ⊗ NXI )

ϕ(TXI)ϕ(T∗XI)θ(NXI )
)

If we assume the result, we can see that the formula can be changed via the variable
change z 7→ zn. This means that Ey(X) does not have poles of order n. Thus we can see
that Ey(X) is holomorphic on z.
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