T.day: Beawille - Donagi constrmstion.
whic foumfolls $x \longleftrightarrow H K$ of deformation type $k 3^{[2]}$.
$H^{4}(x, \mathbb{Z}) . \quad \longleftrightarrow \quad B B F$ form.
1985. Beavuive - Donagi

La variéte des droites d'une hypersurfane cubique de dimension ψ
$X \subset \mathbb{P}^{5}$ hypersurfane of ugree 3 . called whic fourfoll
is the zero lous of a homogeneous polynomial with 6 variably and of dyree 3 .
l.g. $\quad x_{1}^{3}+x_{2}^{3}+\cdots+x_{6}^{3}=0 \quad$ Fermat unic fourfole

Usually ask X to be smooth.
Consider $F_{1}(x)=\left\{l<x \mid l\right.$ is a line contwined in $\left.\mathbb{P}^{5}\right\}$ $l \in \operatorname{Gr}(2,6)$.
Fout: If x is a smoot whic mpersurfare
of dimension $n \geq 2$ (cubil n-folle).
then $F_{1}(x)$ is naturally a poj. Snown variesy of $\operatorname{dim} 2 n-4$.
e.g. $D=2, X$ whic surface, $F_{1}(x)$ is the set of $27 \underbrace{\text { che }}_{\text {different points, }}$ $\operatorname{dim} F_{1}(x)=0$,
$n=3$. $\quad x$ abbic threefole, $F(x)$ is a smoora prij. surefare of
genercle type. [is used try Clemuns - Griffithy to show irrationality if Snowsh ontic terree follis].

In our situation. $n=\psi$, then $F_{1}(x)$ is a snowth prij. 4-folm.
Thm (Beamikle - Donagi):
For a smooth unbic fourfoul $X, \quad F_{1}(x)$ is a $H K$ mger of type $\mathrm{ks}^{[\mathrm{Lz}]}$,

Let V be a complex vector space of dimension 6 ,

$$
\begin{gathered}
\operatorname{Gr}_{r}(2, V) \xrightarrow{\text { Plucher embedding }} \mathbb{P}\left(n^{2} V\right) . \\
8 \\
V_{1} \longmapsto \\
14 . \\
n^{2} V_{1}
\end{gathered}
$$

Choose a generiv 8 -plane $L \subset \mathbb{P}\left(n^{2} V\right)$.
Let $S=G(2, v) \cap L$ is a simply connestere smoosh proj surfane,
Futt: KS trivial.
S is a $k 3$ surface together with an embelaling in $L \cong \mathbb{P}^{d}$,
S is a polarized $k 3$ surface of elgree $\delta \times 2-2=14$.

$$
\begin{aligned}
& V^{*}=\operatorname{Hom}(V, \mathbb{C}) . \quad P\left(\Lambda_{14}^{2} V\right) \supset L_{8}^{L} \text {. } \\
& \mathbb{P}\left(\Lambda^{2} v^{*}\right) \supset \mathbb{L}_{\substack{115 \\
\mathbb{P}^{5}}}^{\operatorname{sen}^{*}}:=\left\{[x] \mid x \in \Lambda^{2} v^{*}, x \perp L\right\} .
\end{aligned}
$$

$\Delta \subset \mathbb{P}\left(\Lambda^{2} V^{*}\right)$ is the set of degenerated 2 -formus.
$\varphi \in \Lambda^{2} V^{*}$ degenerateal $\stackrel{l y}{\Leftrightarrow} \Lambda^{3} \varphi=0$.
So Δ is a jnoosh hypersunfan in $\mathbb{P}\left(n^{2} V^{*}\right)$
Let $X:=L^{*} \cap \Delta$, is a smoth acmbic fourfoult in L^{*},
X is callere a pfaffian conbic fourfolle.

$S=\operatorname{Gr}(2, V) \cap L$. Kj with polarization of dgree 14 .

$$
x=L^{*} \cap \Delta \quad \text { cusil } 4 \text {-fold. }
$$

Aim: constract un isomorphism

$$
F_{1}(x) \xrightarrow{\cong} S^{[2]}
$$

First we construct $a \operatorname{map} S^{[2]} \longrightarrow F_{1}(x)$.
$S^{[2]}=$ Blowup of the diugonal of the symnetric product $S^{(2)}$
$S^{(2)} \rightarrow\{(x, y)$ noorder $\mid x, y \in S\}$,
tuke $x, y \in S, x \neq y$, then (x, y) represent a point in $S^{[2]}$, $S=G(2, V) \cap L$, So x, y represent two 2 -planes in V,
genericity of $L \Rightarrow x \cap y=0$.
then x, y spans a 4 -plane $x \rightarrow y$ in V.
Now look at elements of L_{5}^{*} which vanishes on $\Lambda^{2}(x+y) \cong \mathbb{C}^{6}$
Since $x, y \in S \subset L$,
\Rightarrow all elements of t^{*} vanish on $\Lambda^{2} x, \Lambda^{2} y \in \Lambda^{2}(x+y)$,
So the condition 'Vanishing on $N^{2}(x+y)$ ' exarch constributes
4 freelom-wnstrainss.
So elements in L^{*} vanishing on $n^{2}(x+y)$ form a line

$$
\ell \subset L^{*} .
$$

all elements in l are degenerated since they Vanish on $n^{2}(x+y)$

So $\quad l \subset X=L^{*} \cap \Delta$.
So we obtain a map $S^{[2]}$ - Exceptional divisor $\rightarrow f_{1}(x)$
A prove desciled analysis implies: this map can extend to $S^{[l]} \longrightarrow F_{1}(x)$.

Next we construct $F_{1}(x) \longrightarrow S^{[2]}$. take $\quad l<X$,
e parametrizes a 2.dim'l V.Sp. of degenerated L.forms in

Lemma: If L is generic, then there exists
a 4 -subspace $W \subset V$, sit. any element in l Vanishes restricterl to w.
$\varphi \in \Lambda^{2} U^{*} \quad \varphi$ degenerates (ie. $\Lambda^{3} \varphi=0$)
then we can take basis of V, sit.

$$
\left.\begin{array}{rl}
\varphi \sim & 0 \\
0 & 0
\end{array}\right) \text { or }\left(\begin{array}{cc|c}
0 & 1 \\
-1 & 0 & 0 \\
\hline & 0 & 1 \\
\hline-1 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline & -1 & 0 \\
\hline 0 & 0 & 0
\end{array}\right)
$$

We claim: If L is generically chosen, then cry two different elements $\varphi_{1}, \varphi_{2} \in \ell$ must satisfy $\operatorname{Ker}\left(\varphi_{1}\right) \cap \operatorname{Ker}\left(\varphi_{2}\right)=0$

Pf of the claim: If $\exists \varphi_{1}, \varphi_{2} \in l, \operatorname{dim}\left(\operatorname{ker}\left(\varphi_{1}\right) \cap \operatorname{ker}\left(\varphi_{2}\right)\right) \geq 1$ take $v \in \operatorname{kex} \varphi_{1} \cap \operatorname{ker} \varphi_{2}-0$
then $\forall \varphi \in l$, we have $\operatorname{ker}(\varphi) \geqslant v$.
l Vanishes on $v \wedge V$: b-dim'l subspace of $A^{2} V$.
If fix $V, \operatorname{dim}(v \wedge V)=5$,
a generic L^{*} cuntcuins excutly I point vanishing on VNV. 5

So L with existence of $l<L^{*}$ vanishing on $v \wedge V$ is aft generic.
we car calculate for a fixes v, the dimension of the space of swh L.

$$
\underset{q}{(v \wedge v)^{*}}<\frac{\mathbb{P}\left(\wedge^{2} v^{*}\right)}{14} \begin{array}{cc}
L^{*} \cap(v \wedge v)^{*} & \operatorname{dim} \geq 1 \\
& 9 \times 5=45
\end{array}
$$

Generic, paramesrizing spore of L has $\operatorname{dim} 9 \times 6=54$.
v has freedom 5 .
So Suit L. form a spare of dim at move $45+5=\mathrm{ji}$
So for generic L, $\neq v$, sit. $\exists l \subset L^{*}$, win n l vanishes on un V

The Claim is proved.
We wart to construct $F_{1}(x) \longrightarrow S^{[2]}$.
take $l \in F_{1}(x)$, If $\exists \varphi_{1}, \varphi_{2} \in l$, sit. $\operatorname{Ker}\left(\varphi_{1}\right)$, $\operatorname{Kar}\left(\varphi_{2}\right)$ have dimension 2 .
by the Maim: $\operatorname{Ker}\left(\varphi_{1}\right) \cap \operatorname{Ker}\left(\varphi_{2}\right)=0$,
Let $W=\operatorname{ker}\left(\varphi_{1}\right)+\operatorname{ker}\left(\varphi_{2}\right)<V$.

$$
\operatorname{dim}=4 .
$$

Claim: φ_{1}, φ_{2} vanishes on W.
$\operatorname{ker}\left(\varphi_{2}\right)=W_{1}$. enough to show φ_{2} vanishes on W_{1}. take basis, sit.

$$
\begin{aligned}
\varphi_{1} \sim & \left(\begin{array}{cc|c|c}
0 & 1 & & \\
-1 & 0 & & \\
\hline & 0 & 1 & \\
\hline & -1 & 0 & \\
\hline & & & \\
\hline & & & \\
& e_{1} & e_{3} & e_{4}
\end{array} e_{5}\right.
\end{aligned} e_{6} .
$$

If $\varphi_{2}\left(e_{j} \wedge l_{0}\right) \neq 0$, then wist. this bases, we have:

$$
\varphi_{2}-\left(\begin{array}{c|c}
* & * \\
\hline * & \neq 0
\end{array}\right)
$$

then
$\exists \varepsilon \in \mathbb{C}^{x}$, sit. $\varphi_{1}+\varepsilon \varphi_{2}$ has nonzew determinant,
contraction because $\left[\varphi_{1}+\varepsilon \varphi_{2}\right] \in l<\Delta$
should be degenerated.

We now have $W \subset V$ with l vanishes on $\Lambda^{2} W, \subset \Lambda^{2} V$,

$$
\tilde{L}^{*}<P\left(n^{2} U^{*}\right)
$$

Consider $\operatorname{Gr}(2, w)<\mathbb{P}\left(11^{2} w\right)$
4
smooth quadric hypersurfare.

$$
\underbrace{\mathbb{P}\left(N^{2} w\right) \wedge L}_{8} \ll \begin{array}{cc}
\mathbb{P}^{2}\left(\Lambda^{2} v\right) \\
14
\end{array}
$$

$\operatorname{dim}=1$ sine ℓ vanishes on $\Lambda^{2} W$.
this line intersects $\operatorname{Gr}(2, w)$ in 2 points
\leadsto a point in $S_{[2]}^{[2}$.
So we obtain $F_{1}(x) \rightarrow S^{[2]}$.

